

Application of SedNetNZ using updated erosion mitigations with climate change scenarios in the Horizons region to support NPS-FM 2020 implementation

June 2023

Prepared for:

Maree Patterson Acting Science Manager June 2023 Report No. 2023/EXT/1813 ISBN 9781991061324

Prepared by:

Simon Vale and Hugh Smith Manaaki Whenua Landcare Research

CONTACT 24 hr freephone 0508 800 80 Help@horizons.govt.nz www.horizons.govt.nz

Kairanga
Cnr Rongotea and
Kairanga-Bunnythorpe
Roads Palmerston North

Marton 19 Hammon Street

Taumarunui 34 Maata Street

SERVICE

CENTRES

REGIONAL HOUSES Palmerston North 11-15 Victoria Avenue

Whanganui 181 Guyton Street Taihape

DEPOTS

243 Wairanu Road Taihape

Woodville 116 Vogel Street

POSTAL Horizons Regional Council, Private Bag 11025, Manawatū Mail Centre, ADDRESS Palmerston North 4442

F 06-952 2929

Application of SedNetNZ using updated erosion mitigations with climate change scenarios in the Horizons region to support NPS-FM 2020 implementation

Prepared for: Horizons Regional Council

June 2023

Application of SedNetNZ using updated erosion mitigations with climate change scenarios in the Horizons region to support NPS-FM 2020 implementation

Contract Report: LC4295

Simon Vale and Hugh Smith

Manaaki Whenua – Landcare Research

Reviewed by: Approved for release by:

Andrew Neverman John Triantafilis

Scientist Portfolio Leader – Managing Land & Water Manaaki Whenua – Landcare Research Manaaki Whenua – Landcare Research

Disclaimer

This report has been prepared by Landcare Research New Zealand Ltd for Horizons Regional Council. If used by other parties, no warranty or representation is given as to its accuracy and no liability is accepted for loss or damage arising directly or indirectly from reliance on the information in it.

Contents

Sumr	mary		V
1	Intro	duction	1
2	Back	ground	2
	2.1	SedNetNZ	2
	2.2	Sustainable Land Use Initiative (SLUI)	2
	2.3	Non-SLUI mitigation works	3
3	Obje	ctives	4
4	Meth	ods	4
	4.1	Policy scenarios	4
	4.2	Erosion mitigations	6
	4.3	Selecting future SLUI farms for PS1	11
	4.4	Rate of implementation for PS2	13
5	Resu	lts	.13
	5.1	Suspended sediment loads	
	5.2	Sediment load reductions required to meet NPS-FM visual clarity attribute bands	
	5.3	Impact of climate change	
	5.4	Comparison of PS1 and PS2 with scenarios from Vale et al. 2022	
	5.5	Model evaluation and limitations	
6	Conc	lusions and recommendations	.58
7	Ackn	owledgements	.59
8	Refer	rences	.60
Appe	ndix A	A – SedNetNZ model description	.67
Appe	ndix E	3 – Climate change projections	.75
Appe	ndix (C – Reductions for NPS-FM visual clarity attribute bands	.78
Appe	ndix [D – Model scenarios used in previous report: Vale et al. 2022	.81
Appe	ndix E	E – Model evaluation and limitations	.83
Appe segm clarit	ndix F ents a y), sur	E – Length and proportion of River Environment Classification v2 (REC2) achieving visual clarity attribute bands and NBL (or maintaining baseline visual mmarised by Freshwater Management Unit (FMU) without the effects of clima	al ite
segm clarit	ients a y), sur	G – Length and proportion of River Environment Classification v2 (REC2) achieving visual clarity attribute bands and NBL (or maintaining baseline visual mmarised by mid- and late century under projected climate change for each tive concentration pathway (RCP)	

Appendix H – Length and proportion of River Environment Classification v2 (REC2) segments achieving visual clarity attribute bands and NBL (or maintaining baseline visua clarity), summarised by Freshwater Management Unit (FMU) at mid- and late century under projected climate change for each representative concentration pathway (RCP)1	
Appendix I – Summary comparing the ranges of River Environment Classification v2 (REC segments achieving A band, B band, and NBL with and without climate change impacts summarised by FMU for PS1 and PS21	ŕ

Summary

Project and client

- Horizons Regional Council (HRC) previously contracted Manaaki Whenua Landcare Research to model erosion and suspended sediment loads across the region for a range of erosion mitigation and climate change scenarios to support implementation of the National Policy Statement for Freshwater Management (NPS-FM) 2020 (Vale et al. 2022). The modelling focused on erosion mitigation measures implemented under the Sustainable Land Use Initiative (SLUI) and Whanganui Catchment Strategy (WCS) but did not explicitly represent other mitigation works, such as lowland riparian fencing and planting by HRC's Freshwater Team.
- SLUI commenced in 2006 and is New Zealand's largest hill-country erosion programme. To date, SLUI has completed whole farm plans for over 700 farms covering more than 500,000 ha of land, and has completed more than 35,200 ha of works, largely comprising afforestation, bush retirement, riparian retirement, space-planted trees, and gully tree planting.
- The HRC's Freshwater Team focuses on improving water quality and aquatic habitats, which mainly involves facilitating non-regulatory methods such as stream fencing and riparian planting. Landowners can apply for grants to implement these activities if they meet the eligibility criteria. Funding from the Manawatū Freshwater Improvement Fund and the regional Jobs for Nature fund has supported various projects, including stream fencing and plantings.
- The present report builds on the previous work by Vale et al. (2022) and involves
 modelling region-wide suspended sediment loads and the reductions in load required
 to achieve the NPS-FM 2020 attribute states for suspended fine sediment (visual
 clarity) under current land cover, as well as two future policy scenarios. The present
 modelling incorporates both SLUI/WCS and non-SLUI erosion mitigation works
 completed to date.

Objectives

- To model region-wide mean annual suspended sediment loads under contemporary climate conditions for two policy scenarios.
 - Policy Scenario 1 (PS1): This scenario represents current policy, including the
 implementation of SLUI/WCS and non-SLUI/WCS works, and the existing policy
 settings. It accounts for the progress and maturity of works completed to date, as
 well as the projected rate of new farm plans and on-farm erosion mitigation
 implementation and maturity at 5-year intervals.
 - *Policy Scenario 2 (PS2):* This scenario represents future 'new policy'. It assumes the full implementation of Freshwater Farm Plans and appropriate works by specific dates, based on SLUI priority class, full implementation of stock exclusion regulations, and horticultural mitigations.
- To model the effect of future climate change projections on region-wide erosion and suspended sediment loads at mid- (2040) and late (2090) century for the two policy scenarios.

• To assess the load reductions required to meet NPS-FM 2020 attribute bands and the national bottom line (NBL) for suspended fine sediment (visual clarity) for the two policy scenarios, with and without the effects of climate change.

Methods

- The SedNetNZ model was applied to the Horizons region to estimate mean annual suspended sediment loads across the River Environment Classification v2 (REC2) digital river network.
- The effect of future climate change on erosion and suspended sediment loads for the two policy scenarios was modelled following a similar approach to that described by Basher et al. (2020) and Neverman et al. (2023). This involved the use of rainfall and temperature grids from six regionally downscaled climate models (RCMs) and four representative concentration pathway (RCP) climate trajectories at mid- and late century to modify projected future erosion process rates under climate change.
- The proportional and absolute load reductions required to meet the NPS-FM 2020 attribute bands (A band and B band) and NBL were assessed for each of the scenarios. These were summarised by length and proportion by length of REC2 segments achieving each attribute state.

Results

- Total erosion in the Horizons region is estimated at 8.8 Mt yr⁻¹, with a total net suspended sediment load of 8.3 Mt yr⁻¹ reaching the coast. The highest erosion rates (>2,500 t km⁻² yr⁻¹) are found in erosion-prone areas such as the Manawatū, Rangitīkei-Turakina, and Whangaehu Freshwater Management Units, as well as certain REC2 segments experiencing higher rates of bank erosion. By 2100 total erosion is projected to decrease to 4.6 Mt yr⁻¹ for PS1 and 3.6 Mt yr⁻¹ for PS2, resulting in region-wide reductions of 4.2 and 5.3 Mt yr⁻¹, or 48% and 60% for PS1 and PS2, respectively.
- The proportions (by length) of REC2 segments achieving the attribute bands (A band and B band) and the NBL were, respectively, 38%, 60%, and 75% in 2021. These proportions increase to 72%, 84%, and 90% for PS1 at 2100, and 74%, 85%, and 91% for PS2 at 2100. The achievement of these targets decreases for higher stream order segments. For example, in 2021, 38–43% of REC2 segments from stream orders ≤5 achieved the A band, while only 8% and 0% of segments from stream orders 6 and 7, respectively, achieved the A band.
- The regional pattern of suspended sediment load reductions and achieved attribute states is influenced by several factors: 1) SLUI erosion mitigation works primarily by targeting hill country areas, determining the selection order of new farm plans; 2) extensive implementation of riparian fencing and planting in lowland areas by 2025; and 3) variations in visual clarity thresholds based on the spatial pattern in the suspended sediment class used to define the thresholds.
- Projected total erosion for PS1 under different RCPs ranges from 8.4 to 12.5 Mt yr^{-1} for mid-century and 4.9 to 10.1 Mt yr^{-1} for late century, compared to loads without the effect of climate change. This represents a change of 7 to 46% and –4 to +79% for mid- and late century, respectively.

- Projected total erosion for PS2 under different RCPs ranges from 6.2 to 9.2 Mt yr⁻¹ for mid-century and 3.1 to 5.8 Mt yr⁻¹ for late century. This represents a change of 3 to 41% for mid-century and –16 to +58% for late century. Only the minimum and median RCP2.6 projections at late century show a decrease in sediment load (Figure S1).
- The proportion of REC2 segments (by length) achieving the NBL under future climate change ranges from 30% to 49% at mid-century and from 47% to 83% at late century for PS1. For PS2, the proportions are 43–78% at mid-century and 69–85% at late century, across all RCPs.

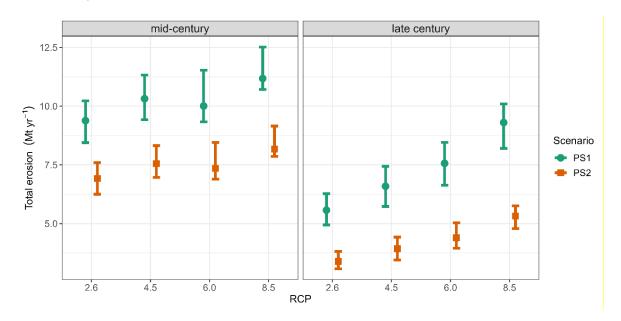


Figure S1. Total erosion under projected climate change for the Horizons region at mid- and late century, by RCP for each erosion mitigation scenario (see Figure 16).

Model limitations

- The previous report by Vale et al. (2022) outlined specific limitations for each modelling component, including the representation of erosion processes, climate change projections, the reductions in sediment load required to meet visual clarity attribute bands, and the effectiveness of SLUI in reducing loads. These limitations, which can be found in Appendix E, should be considered when interpreting model outputs in the present report.
- The inclusion of erosion mitigation works completed by HRC's Freshwater Team (such as lowland riparian fencing) required modifications to the modelling approach. This introduced additional uncertainty due to several factors. For instance, the available spatial data for riparian fencing and planting only partially represents the existing fencing and planting in the region. Therefore, estimates for riparian fencing were augmented with information obtained from MWLR's Survey of Rural Decision Makers (SRDM), which may contain common survey response biases. Moreover, the SRDM stream definitions are not directly mappable to available river classifications. The main implication of this approach for estimating the current riparian fencing is that it may over- or underestimate the length of the remaining stream network available for

fencing, which affects the potential future reduction in sediment load achievable through additional riparian fencing.

Conclusions and recommendations

- Model scenarios representing the implementation of future erosion mitigation policy show significant reductions in region-wide suspended sediment loads by late century, with PS1 achieving a 48% reduction and PS2 achieving a 60% reduction, without the effects of climate change. For PS2, most of this reduction in load (56%) is achieved by 2060.
- These sediment load reductions lead to similar proportions of REC2 segments meeting NPS-FM attribute bands between the two policy scenarios by late century, although PS2 achieves these improvements earlier.
- The projected climate change impact decreases the proportion of REC2 segments meeting the NBL for suspended fine sediment. PS1 and PS2 offset some of the climate-change-related increases in sediment loads.
- The sediment load reductions from PS1 and PS2 are greater than those achieved in previous scenario modelling by Vale et al. (2022), which results in a higher proportion of REC2 segments achieving NPS-FM attribute bands.
- Continued implementation of both hill country and lowland erosion mitigations will be required to reduce potentially significant impacts of climate change on suspended sediment loads by late century.
- Model predictions of sediment load reductions from erosion mitigations would benefit from region-specific data on erosion control effectiveness, implementation levels, and maturity of mitigation works at the farm and catchment scales. Also, utilising region-wide LiDAR data would improve the representation of erosion processes in SedNetNZ.

1 Introduction

Horizons Regional Council (HRC) previously contracted Manaaki Whenua – Landcare Research (MWLR) to model erosion and suspended sediment loads across the region for a range of erosion mitigation and climate change scenarios to support implementation of the National Policy Statement for Freshwater Management (NPS-FM) 2020 (Vale et al. 2022). Erosion mitigation focused on works completed under the Sustainable Land Use Initiative (SLUI) and Whanganui Catchment Strategy (WCS), but did not explicitly represent other mitigation works, such as the lowland riparian fencing and planting by HRC's Freshwater Team.

The previous work involved:

- modelling region-wide suspended sediment and sediment-associated phosphorus loads under current land cover and SLUI/WCS work to date
- assessing the load reductions required to achieve NPS-FM 2020 attribute states for suspended fine sediment (visual clarity)
- comparing reductions in modelled suspended sediment loads under future SLUI implementation scenarios relative to the current baseline with the load reductions required to achieve each NPS-FM 2020 attribute state
- modelling suspended sediment loads under future climate change for SLUI implementation scenarios and assessing the load reductions required to achieve each NPS-FM 2020 attribute state.

Following completion of the modelling (Vale et al. 2022), HRC approached MWLR to expand the work by incorporating additional data on non-SLUI erosion mitigation works, such as lowland fencing and planting by the HRC Freshwater Team, and to model future policy implementation scenarios. HRC asked MWLR to outline the scope of work required to:

- incorporate non-SLUI erosion mitigation works to date that were not previously included in the modelling (e.g. lowland fencing and planting by the Freshwater Team; horticultural erosion control measures)
- model future HRC policy implementation scenarios related to ongoing lowland fencing and planting initiatives, stock exclusion regulations (Resource Management (Stock Exclusion) Regulations 2020); and best-practice horticultural sediment management.

The new work would also assess the load reductions required to achieve NPS-FM 2020 attribute states for suspended fine sediment (visual clarity) under current and future policy scenarios; model suspended sediment loads under future climate change for policy scenarios; and assess the load reductions required to achieve each NPS-FM 2020 attribute state.

The present report is intended to be read in conjunction with the preceding report 'Application of SedNetNZ with SLUI erosion mitigation and climate change scenarios in the Horizons region to support NPS-FM 2020 implementation' by Vale et al. 2022. The previous report provides a comprehensive background and description of the SedNetNZ model, although, where appropriate, this information is also included in the appendices of the present report for ease of reference.

2 Background

2.1 SedNetNZ

A range of erosion processes occur in the Horizons region. Of notable importance are shallow landslides in response to intense rainfall events (Hancox 2004; Hancox & Wright 2005; Dymond et al. 2006; Basher 2013; Fuller et al. 2016), streambank erosion (Fuller & Heerdegen 2005; Fuller 2008), gully erosion in unconsolidated sands and silts (Miri 1999; Vale 2018; Vale, Smith, Matthews et al. 2021), and earthflows in the soft-rock hill country (Neverman et al. 2020; Dymond et al. 2006).

The SedNetNZ sediment budget model represents the diversity of erosion processes occurring in the Horizons region and more widely across New Zealand. This includes shallow landslide, earthflow, gully, surficial, and streambank erosion (Dymond et al. 2016; Smith, Spiekermann et al. 2019). Model outputs for these erosion processes are combined with losses due to floodplain deposition and lake sediment trapping to estimate mean annual suspended sediment loads at the REC2 subcatchment level.

Earlier versions of SedNetNZ have previously been applied in the Horizons region to assess the projected impact of SLUI (Dymond et al. 2014; Basher et al. 2018) and climate change on suspended sediment loads, but not for all erosion processes (Manderson et al. 2015; Basher et al. 2018, 2020). SedNetNZ has since undergone several significant updates, including improvements to the representation of bank erosion (Smith, Herzig et al. 2019; Smith et al. 2020), surficial erosion (Smith, Spiekermann et al. 2019; Neverman et al. 2021b), lake sediment trapping (Neverman et al. 2021b), and floodplain deposition (Vale, Smith, Neverman et al. 2021). These updates were included in the application of SedNetNZ to the Horizons region described by Vale et al. (2022).

2.2 Sustainable Land Use Initiative (SLUI)

The Sustainable Land Use Initiative (SLUI) began in 2006 and is New Zealand's largest hill-country erosion programme. It is funded from a mixture of the Ministry for Primary Industries (MPI)'s Hill Country Erosion Fund and HRC's rates and farmer contributions (Horizons Regional Council 2019b). SLUI has completed whole farm plans (WFPs) for over 700 farms covering more than 500,000 ha of land, and has completed more than 35,200 ha of works, largely comprising afforestation, bush retirement, riparian retirement, space-planted trees, and gully tree planting.

SLUI is informed by the Highly Erodible Land (HEL) model, which was previously developed by MWLR to spatially predict the amount of highly erodible land in the region. This analysis established that Manawatū-Whanganui has the largest area of HEL on private land in New Zealand, with approximately 263,000 ha of HEL under pasture in the region. To further target land management efforts, HRC developed a classification system within the region which separates land into 'top', 'high', 'low', and 'not' priority. Top priority land is estimated to contribute 40–55% of the sediment in the region's rivers and high priority land a further 25–30% of the sediment. This has made top and high priority land the main target for the programme to date (Horizons Regional Council 2019a).

WFPs are used as a tool to bring new land into the programme and for allocating grants. Approximately half of the top and high priority land in the region is within SLUI WFPs. The previously separate Whanganui Catchment Strategy (WCS), established before the SLUI, has been integrated into the programme. This included 39 WCS plans covering approximately 22,000 ha as at 30 June 2021 (Horizons Regional Council 2019a).

2.3 Non-SLUI mitigation works

The Freshwater Team at HRC undertakes a range of activities focused on improving water quality and aquatic habitats, which primarily involves supporting non-regulatory methods such as stream fencing and riparian planting. Landowners who meet certain criteria can apply for freshwater grants to carry out these activities.

The Manawatū Freshwater Improvement Fund, specific to the Manawatū catchment, has provided funding for 50 km of fencing and 40,000 plants in the financial years 2021/22 and 2022/23. The regional Jobs for Nature fund has allocated funding for 105 to 160 km of fencing and 100,000 to 140,000 plants from 2021/22 to 2023/24. Furthermore, the long-term plan beyond 2024/25 estimates an additional 80 km of fencing per year until approximately 2030.

To be eligible for funding, riparian fencing and waterway planting must meet various criteria, including factors such as location, slope, stream width, setback distance, planting density, species, and fence type. For instance, to comply with the stock exclusion regulations in the National Environmental Standards for Freshwater (NES-FW), fencing must be at least 3 m away from the edge of the stream bed. If the waterway is less than 1 m wide or not within a designated low-slope area, funding may still be available if a 2 m setback can be applied to provide suitable width of ungrazed riparian margin (Horizons Regional Council, unpublished document).

The Resource Management Act (Stock Exclusion) regulations (2020) require the exclusion of stock from lakes and wide rivers (>1 m wide), with a 3 m setback from the bed's edge and specific timelines. These regulations require the exclusion of dairy cattle, pigs, and all cattle and deer on land used for fodder or break feeding, and on irrigated pasture from all slopes, by 1 July 2023; exclusion of all dairy support cattle from all slopes by 1 July 2025; and exclusion of all beef cattle and deer from mapped low slopes (<10°) by 1 July 2025.

For areas in cultivation including horticulture, there are permitted activity setbacks of 5 m in the current regional plan. Thus, commercial vegetable-growing areas must maintain a 5 m setback to prevent cultivation within 5 m of the bed of a permanently flowing river, a non-permanently flowing stream with an active bed wider than 1 m, or a lake.

3 Objectives

The present report has three objectives.

- To model region-wide mean annual suspended sediment loads using SedNetNZ under contemporary climate conditions for the following policy scenarios.
 - Policy Scenario 1 (PS1): This represents current policy, including the
 implementation of SLUI/WCS and non-SLUI/WCS works and the existing policy
 settings. It includes the projected rate of new farm plans and on-farm erosion
 mitigation implementation across the region at 5-year intervals.
 - Policy Scenario 2 (PS2): This represents a future projection based on the full
 implementation of Freshwater Farm Plans (FWFPs) and relevant works according
 to SLUI priority class. It includes the full implementation of stock exclusion
 regulations and horticultural mitigations works across the region at 5-year
 intervals.
- To model the effect of future climate change projections on region-wide erosion and suspended sediment loads at mid- (2040) and late (2090) century for the two policy scenarios.
- To assess the load reductions required to meet NPS-FM 2020 attribute bands and the national bottom line for suspended fine sediment (visual clarity) for the two policy scenarios, with and without the effects of climate change.

4 Methods

In this section we describe the approach used to model the PS1 and PS2 scenarios in the Horizons region using SedNetNZ. The previous report by Vale et al. (2022) provided detailed descriptions of the SedNetNZ model, so our focus here is to describe changes in the modelling approach associated with the two policy scenarios.

The description of erosion process modelling from the previous report can be found in Appendix A. In addition, Appendix B describes the approach to estimating climate change impacts on erosion processes and sediment loads, including the climate models and representative concentration pathways (RCPs) used for future projections. Appendix C describes methods for estimating the sediment load reductions required to meet NPS-FM visual clarity attribute bands.

4.1 Policy scenarios

The region-wide simulations comprise the two policy scenarios summarised in Table 1. These scenarios represent the application of SLUI/WCS erosion mitigation, along with non-SLUI/WCS works, under current climate conditions for the year 2021 and at 5-year intervals from 2025 to 2100. The impact of projected climate change on suspended sediment loads was modelled for the two scenarios at mid- (2040) and late (2090) century. Six regional climate models (RCMs) were used to select the minimum, median, and maximum model projected change across four RCPs for each of the scenarios.

Table 1. Summary of policy scenarios

Scenario Description

Baseline 2021 update

The current policy scenario comprising recent land cover (LCDB v5) with SLUI/WCS and non-SLUI/WCS works and current policy settings. The baseline (2021) for both PS1 and PS2 represents SLUI and non-SLUI works implemented up to 1 July 2021, including the maturity level of implemented erosion control.

- SLUI works were modelled for the current extent of SLUI works for top, high, and low SLUI priority farms in keeping with the previous approach (Vale et al. 2022). SLUI 'not' priority farms were removed from this application, except where there were mass-movement-related (shallow landslide, earthflow, or gully) sediment loads.
- Non-SLUI works were modelled based on stream fencing and planting spatial data provided by the HRC Freshwater Team. This primarily occurs in lowland/SLUI 'not priority' farms.
- In the absence of data on the full extent of existing riparian fencing, the baseline stream
 fencing for lowland farms was approximated using district averages according to land use
 from the 2022 Survey of Rural Decision Makers (SRDM). These estimates were
 supplemented with the stream fencing and planting spatial data provided from HRC, and
 the highest value of either the SRDM or HRC fencing data was used for modelling at the
 REC2 stream segment level.
- Best-practice horticultural sediment management was represented by the presence of 5 m buffer strips around horticultural cultivation areas.
- Areas identified by HRC as 'sites of significance aquatic' were assumed to be fully fenced with a 10 m setback.

Policy Scenario 1 (PS1)

The future projection for PS1 represents future implementation of SLUI and non-SLUI works, including the maturity level of erosion control works. The future projection comprised the following.

- SLUI works continue for SLUI/WCS at the current rate of SLUI/WCS farm plan
 implementation used in Vale et al. 2022 (i.e. new farms are mapped at the rate of 10,000
 ha per year, and works implementation occurs at a rate of 1.14% once the farm is
 mapped). This only occurs for top, high, and low priority farms and 'not' SLUI priority
 farms, which have sediment loads generated from mass movement processes. This
 requires minor reselection of mapping dates due to the removal of 'not' priority farms
 from SLUI mapping.
- Non-SLUI works were modelled to reflect full implementation of stock exclusion regulations by 1 July 2025. This includes a further 80 km of fencing per year from 2025 to 2030 for land not included in the NES-FW to reflect ongoing fencing and planting rates from the HRC Freshwater Team.

Policy Scenario 2 (PS2)

The future projection for new policy (PS2) is based on the implementation of FWFPs, stock exclusion regulations, and horticultural mitigations by specific dates. This scenario was worked through in conjunction with HRC and based on the spatial application of erosion mitigations at the whole farm level. The scenario represents:

- FWFPs completed and certified by 2030 at 20% per year from 2025, randomised across the region.
- full implementation of appropriate works on top, high, and low HEL land classification
 within each farm by 2035, 2045 and 2065, respectively, across top, high, and low SLUI
 farm priority classes (appropriate works will be applied based on the proportion of past
 works for each SLUI farm priority class, and proportions of HEL land classes based on the
 proportions from currently mapped farms).
- non-SLUI works modelled to reflect full implementation of stock exclusion regulations by 1 July 2025, which includes a further 80 km of fencing per year from 2025 to 2030 for land not included in the NES-FW to reflect ongoing fencing and planting rates by the HRC Freshwater Team.

Note: LCDB = Land Cover Database

4.2 Erosion mitigations

In the previous application of SedNetNZ in the Horizons region (Vale et al. 2022), SLUI sediment load reductions were applied across all SLUI farm priority classes based on WFPs. However, the inclusion of non-SLUI/WCS works and current policy considerations (such as stock exclusion regulations, riparian fencing and planting in lowland freshwater areas, and improved sediment management practices for horticulture) requires some adjustments to the approach.

The main modification involves distinguishing the SLUI 'not' priority farm classes from the top, high, and low priority classes. Non-SLUI mitigation works are primarily targeted at addressing bank and surficial erosion in the 'not' priority areas. However, a significant number of 'not' priority farms still contribute to sediment loads resulting from processes such as shallow landslides, earthflows, or gully erosion. In such cases, these farms are still considered for the implementation of SLUI mitigation works to address these erosion processes.

4.2.1 SLUI Whole Farm Plans

The estimation of sediment load reduction for each farm was based on the effectiveness, implementation, and maturity of various erosion mitigation measures implemented within SLUI WFPs. This approach was applied to both the existing mapped SLUI erosion mitigation measures and future mitigation measures for mapped and unmapped farms.

Sediment load reduction for a farm can be represented by:

Sediment reduction =
$$\sum_{w=1}^{n} \left(\frac{E_w}{100} \times \frac{I_w}{100} \times \frac{M_w}{100} \right)$$
 (1)

where E is effectiveness (%), I is the proportional extent of implementation (%), M is maturity (%), w is the type of erosion mitigation, and n is the number of different types of erosion mitigation applied.

'Effectiveness' represents the capacity of the erosion mitigation applied to reduce sediment load once fully mature and is specific to each mitigation. Afforestation and bush retirement have an effectiveness value of 90% for mass movement erosion, based on published data, while riparian retirement is estimated at 80% (Dymond et al. 2010, 2016). Space-planted trees and gully tree planting have a value of 70% based on published data from Hawley and Dymond (1988) and Dymond et al. (2010). The effectiveness of afforestation and bush retirement at reducing surficial erosion (Table 2) was derived from the change in the cover factor (\mathcal{C}) (see Appendix A, equation A1) based on the conversion of pasture to forest/scrub. Space-planted trees and gully tree planting do not typically achieve canopy closure, and therefore reductions from these mitigations were not applied to surficial erosion.

'Maturity' represents the proportion of time passed relative to the age at which a mitigation may be considered fully mature and thus fully effective. Maturity rates are outlined in Table 2 based on values used in previous work (e.g. Manderson et al. 2011; McIvor et al. 2011; Basher et al. 2018). Maturity was determined for currently mapped erosion control works based on the recorded year of implementation. In some situations,

recent afforestation and retirement mitigation (<10 years old) mapped in SLUI are already captured in LCDB v5, which would be modelled as fully mature forest. Similarly, mature afforestation and bush retirement (>10 years old) should be captured as woody cover in LCDB v5, but this is not always the case.

To ensure the effects of erosion mitigation are not double-counted, mature afforestation and retirement works implemented earlier than 2012 (>10 years old) were added to LCDB v5 and classified as woody vegetation, while immature afforestation and retirement works implemented later than 2012 were added, classified as pasture, and then matured to the appropriate age. This ensures the sediment load reduction is consistently applied for both past and future mitigation, with the appropriate maturity level at each time interval. All other mitigations (such as space planting) were considered to be represented as pasture in LCDB v5 because they typically do not achieve canopy cover and are generally too small in area to be captured in LCDB.

Table 2. Summary of maturity and effectiveness of the SLUI erosion mitigation, based on Basher et al. 2018

Erosion mitigation	Years to fully mature	Annual maturity rate	Effectiveness
Afforestation	10	10%	90% (mass movement) 50% (surficial)
Bush retirement	10	10%	90% (mass movement) 50% (surficial)
Riparian retirement	2	50%	80%
Space-planted trees	15	6.66%	70%
Gully tree planting	15	6.66%	70%

'Implementation' in equation (1) represents the erosion works applied on a farm as a proportion of what may be considered full implementation of the WFP. Full implementation is difficult to estimate because there is no clearly defined mitigatable area or area of works for a given farm plan to be considered fully implemented. HRC provided an estimated average rate of on-farm works implementation of 1.14% per year (or 88 years to be fully implemented), which was used to model future rates of WFP implementation. This was based on the area of works completed on pasture for mapped high and top priority farms as a proportion of the total area of mapped pasture on high and top priority land over the last 10 years. This estimate required an assumption that all erosion control works were mapped in what was initially pasture, regardless of its classification in the latest LCDB v5 layer. This is important because mature afforestation and bush retirement mitigations will appear as woody cover in the latest LCDB layers and could misrepresent the true extent of implementation on a farm.

The proportion of each erosion mitigation type implemented within each farm was estimated based on the proportional area of each erosion mitigation. The proportional implementation of future works was estimated based on the past proportion of each erosion mitigation within each SLUI priority class (Table 3) and weighted based on the

erosion process loads occurring within each intersecting farm-REC2 watershed. This can be expressed as:

$$I_w = I_{wfp} \times (W_p \times Erosion \, load_p) \tag{2}$$

where I_w is the proportional implementation of the $w^{\rm th}$ erosion mitigation type, I_{wfp} is the proportional extent of WFP implementation, W_p is the base proportion of each erosion mitigation for the associated SLUI priority class (Table 3), and $Erosion\ load_p$ is the combined load proportion for the erosion processes targeted by the $w^{\rm th}$ erosion mitigation (Table 3).

This approach ensures that erosion control works are not applied to areas that do not experience the types of erosion the works are designed to mitigate. For example, if only bank erosion occurred in a given farm-REC2 watershed intersection, then the proportion of works would be weighted to include only riparian retirement. Implementation continues until 100% is reached for each WFP.

		Prop	ortion (%)		
Erosion mitigation	All land	L	and prio	rity classe	es	Erosion process mitigated
	classes	Not	Low	High	Тор	
Afforestation	44.0	12.2	32.1	53.5	37.8	Shallow landslide, earthflow, surficial
Retirement	30.3	14.4	15.2	27.7	36.8	Shallow landslide, earthflow, surficial
Riparian retirement	9.9	34.8	17.5	7.5	9.9	Bank erosion
Spaced planting	14.3	37.2	33.1	9.9	13.8	Shallow landslide, earthflow
Gully planting	1.6	1.4	2.1	1.4	1.7	Gully erosion

4.2.2 Lowland riparian fencing

Estimating sediment load reductions due to lowland riparian fencing requires a different approach due to the nature of the data and ongoing implementation based on regulations. To address this, we applied a 30 m buffer to the REC2 digital stream network and used it to select relevant fences and plantings near the streams. This buffer accounts for variations in channel width and positional error in the data. We also considered land cover to exclude areas that are not suitable for fencing, such as natural cover areas within the DOC estate.

We estimate the fraction of REC2 stream link that has been fenced or planted (FR_j ; equation 4) based on the intersection of the buffered fence and planting lines/polygons to approximate the proportional extent of fencing for a given REC2 segment.

However, the available spatial data on riparian fencing and planting only represents new initiatives and does not capture pre-existing fencing. To address this, we approximated the riparian fencing for the updated 2021 baseline using responses from the 2022 Survey of Rural Decision Makers (SRDM) according to district averages and land use (Table 4),

following the approach of Neverman and Smith (2022). The SRDM uses terms such as 'free-flowing streams' and 'minor waterways/drains' to obtain information about riparian fencing extent from landowners. These terms are not clearly defined, so assumptions are required to appropriately apply the SRDM data to the REC2 segments.

We applied estimated fencing proportions for SRDM 'free-flowing streams' to 'wide streams' that meet the criteria for the Sustainable Dairying Water Accord and are third order or higher on both high- and low-slope land (as mapped by *Stock Exclusion Low Slope Land 2022* (Ministry for the Environment 2022b). For 'minor waterways, drains,' we used estimated proportions for 'wide streams' of first or second order on low-slope land. These estimates were supplemented by the HRC riparian fencing and planting data, and we used the higher estimate of the two data sources. The estimated extent of riparian fencing can be seen in Figure 1.

Table 4. Summary of estimated fencing proportions from SRDM

District		ijor ng streams)	Minor (minor waterways/drains)			
	SnB ^a	DAI	SnB ^a	DAIa		
Horowhenua District	0.50 ^b	0.87	0.30 ^b	0.56		
Manawatū District	0.72	1.00	0.49	0.74		
Palmerston North City	0.81	0.89 ^b	0.49	0.64 ^b		
Rangitikei District	0.53	0.89 ^b	0.22	0.44		
Ruapehu District	0.33	0.89 ^b	0.23	0.64 ^b		
Tararua District	0.41	1.00	0.17	0.71		
Whanganui District	0.41	0.89 ^b	0.30	0.64 ^b		

^a SnB refers to predominantly 'sheep and beef' and DAI refers to 'dairy' land use.

Wide streams were classified based on the criteria defined in the Sustainable Dairying Water Accord (Dairy Environment Leadership Group 2013). Accord streams are freshwater waterways that are wider than 1 m, deeper than 30 cm, and have a permanent flow. The width of the streams was estimated using mean annual flow data for each REC2 segment (Booker & Hicks 2013; Semadeni-Davies & Elliott 2016; Whitehead & Booker 2020).

According to the Resource Management (Stock Exclusion) Regulations 2020, full implementation of riparian fencing is expected to be completed by 2025. To represent this in the modelling, we assumed that all wide streams intersecting with SnB and DAI land uses within 'low slope land,' as well as all wide streams intersecting with DAI land use across all slopes, will be fenced by 2025 (as shown in Figure 1). Moreover, an additional 80 km per year of riparian fencing was randomly distributed across the region between 2025 and 2030 to represent ongoing work by the HRC Freshwater Team.

^b Region averages were used where there were no survey data for the district.

¹ Land use classification was based on the spatial layer provided by HRC.

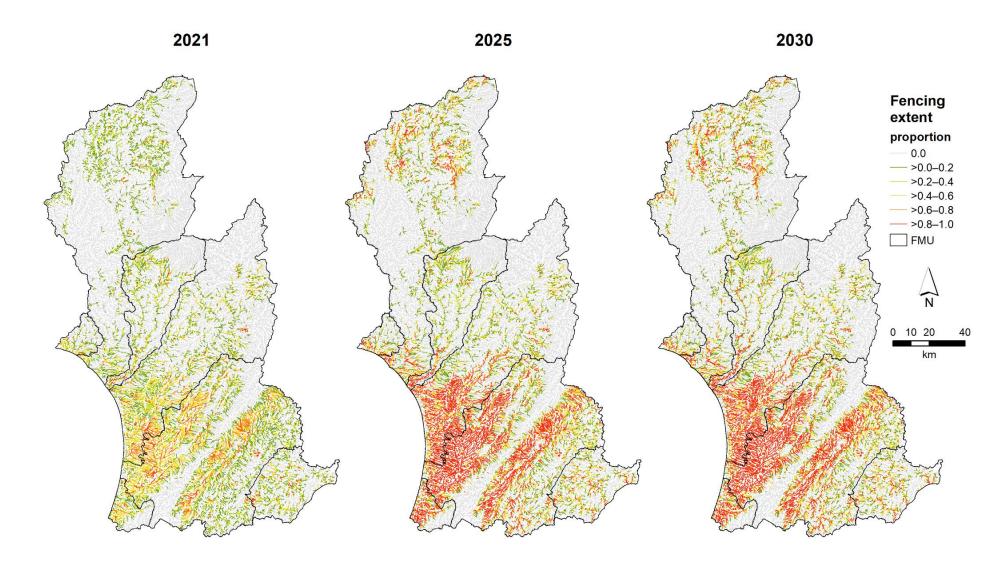


Figure 1. Estimated extent of riparian fencing at the updated 2021 baseline, 2025, and 2030.

A sediment passing factor, the inverse of trapping efficiency, was calculated for the riparian buffer of the jth stream segment (PF_{F_j}) following Zhang et al. (2010):

$$PF_{F_j} = 1 - \frac{k(1 - e^{-bw})}{100} \tag{3}$$

where k and b are fitted parameters equal to 90.9 and 0.446, respectively (Zhang et al. 2010), and w is the buffer width. A mean buffer width for each REC2 segment was estimated based on the proportion of land class and the corresponding buffer width intersecting with the segment. A 3 m buffer width was used for wide streams intersecting with low-slope land; 2 m for wide streams intersecting with high-slope land; 5 m for streams intersecting with horticultural areas; and 10 m for streams intersecting with 'sites of aquatic significance', which were identified by HRC.

The reduction in suspended sediment load from surficial erosion due to fencing and stock exclusion in a reach (S_{F_j}) is a function of the proportion of the reach fenced (FR_j) and the buffer passing factor:

$$S_{F_j} = ES_j \times \left(1 - FR_j PF_{F_j}\right) \tag{4}$$

where ES_i is the load from surficial erosion for the jth reach per REC2 watershed.

Reduction in bank erosion

The reduced net suspended sediment load from bank erosion due to fencing and stock exclusion (B_{F_i}) is computed as:

$$B_{F_i} = B_j \times \left(1 - 0.8FR_j\right) \tag{5}$$

where B_j is the net suspended sediment load from bank erosion without the effect of fences reducing erosion. A reduction of 80% in net suspended sediment load from bank erosion may be attributable to riparian fencing and stock exclusion (Dymond et al. 2016). This reflects the effect of reduced stock trampling and foraging on banks (Trimble 1994) as well as the potential for riparian woody vegetation to become better established in the absence of livestock over the longer term. The estimated 80% reduction assumes the buffer strip is no longer grazed and sufficient time has elapsed for banks to recover from previous trampling impacts, and for woody vegetation to become established and increase bank stability.

4.3 Selecting future SLUI farms for PS1

Under PS1 the selection of new WFPs occurred at a rate of 10,000 ha per year, which aligns with HRC's expected mapping rate for WFPs (Vale et al. 2022). Previously, the selection of new WFPs involved random sampling from unmapped farm boundaries, considering the proportions of top, high, low, and 'not' priority SLUI farms that had been mapped in the past. This prioritised top and high priority SLUI farms (Table 5). When a

priority class had no remaining farms, the proportions of the remaining classes were adjusted, and random sampling continued until all unmapped farms were selected.

Table 5. Past proportions of each SLUI farm priority

SLUI Priority	Past proportion of mapped farms (%)	Future area of new mapped farms per year (ha)
Not	5	500
Low	20	2,000
High	40	4,000
Тор	35	3,500
Total		10,000

However, a minor adjustment was made to the new farm selection process in the present report. Farms in the 'not' priority class with no sediment load from mass movement processes were removed from the selection process for SLUI implementation. These farms were instead targeted for riparian fencing. This adjustment was made to maintain a similar selection order while still achieving the goal of mapping 10,000 ha of new farms each year. As a result, the implementation of new farm plans may start earlier for some farms compared to the modelling by Vale et al. (2022). Notably, a large proportion of top and high priority farms in the region have already been mapped.

Figure 2 provides the approximate proportions of each priority class selected each year. The total area of new farms mapped may exceed 10,000 ha if the final selected farm is large enough to reach the threshold.

15,000 10

Figure 2. Proportions of each priority class selected for new WFPs for PS1.

4.4 Rate of implementation for PS2

Under PS2 it is assumed that all WFPs will be completed by 2030. The implementation of erosion mitigation works is based on the full implementation of appropriate works on top, high, and low land (HEL) classifications within specific timeframes. By 2035, works on top land will be fully implemented, followed by high land by 2045, and low land by 2065. These timeframes correspond to the SLUI farm priority classes of top, high, and low.

To estimate the proportion of each land classification within the unmapped farms, the average proportions of top, high, and low land currently mapped within the mapped WFPs are considered for each SLUI priority class.

To achieve the full implementation of appropriate works on top, high, and low land classifications by the specified timeframes, implementation rates of 10%, 5%, and 2.5%, respectively, are required. These rates, combined with the proportions of each land classification within the farms, determine the overall rate of implementation for each farm. The implementation rates are applied starting from 2025. The approach to determine maturation and effectiveness of the mitigation works remains the same as described in section 4.2.1.

5 Results

5.1 Suspended sediment loads

Mean annual suspended sediment loads are provided in two forms: 'total erosion', which represents the total suspended sediment load (t yr⁻¹) produced from all erosion processes in each REC2 watershed; and 'total net load', which represents the net suspended sediment load routed through the stream network to the coast accounting for lake trapping and floodplain deposition. These modelled loads do not include the impacts of climate change, which are described in section 5.3.

Total erosion

Total erosion loads for each scenario are presented in Table 6 and Figure 3. The tables summarise erosion loads by FMU from 2021 to 2100 and provide load reductions achieved relative to the updated 2021 baseline loads for each policy scenario. The proportion of total load by erosion process for 2021 baseline is provided in Table 7. Mean annual suspended sediment yields (t km⁻² yr⁻¹) are provided for 2021 in Figure 4 and for 2100 for both policy scenarios in Figure 5.

Region-wide total erosion was estimated as 8.8 Mt yr⁻¹ for 2021. The highest sediment yields (>2,500 t km⁻² yr⁻¹) occur in a band of gully and shallow landslide-prone land mostly restricted to hill country in the Manawatū, Rangitīkei-Turakina, and Whangaehu FMUs. High sediment yields are also observed in a number of REC2 watersheds that produce high bank erosion loads (Figure 4). The proportion of each erosion process contributing to total erosion load varies across FMUs, which reflects the erosion terrains within each FMU (Table 6). Sediment load from shallow landslide erosion represented the dominant

contribution (67%) across the region. However, contribution varied from 33% to 77% across the FMUs. Sediment load from bank erosion represented a 5% contribution across the region, however contributed varied from <1% to 32% across the FMUs.

By 2100 the estimated total erosion reduces to 4.6 Mt yr $^{-1}$ for PS1 and 3.6 Mt yr $^{-1}$ for PS2. This represents a region-wide reduction of 4.2 Mt yr $^{-1}$ (48%) for PS1 and 5.3 Mt yr $^{-1}$ (60%) for PS2 compared to the 2021 baseline loads.

Proportional reductions at 2100 vary across FMUs, ranging from 20% to 60% for PS1 and 21% to 70% for PS2. The smallest reductions are observed in the Waiopehu FMU, while the largest reductions occur in the Puketoi ki Tai and Whangaehu FMUs. Absolute load reductions by 2100 range from 0.01 to 1.2 Mt yr⁻¹ for PS1 and 0.01 to 1.4 Mt yr⁻¹ for PS2, with the Manawatū and Whanganui FMUs experiencing the largest reductions.

The rate of reduction in each FMU for PS1 depends on factors such as the proportion of SLUI farm priority classes, the order of new farms selected for implementation, the implementation rate, and the requirement for riparian fencing completion by 2025 (Figure 1). The impact of riparian fencing and planting is evident in the Waiopehu FMU, where a significant reduction is observed between 2021 and 2025 due to the relative extent of lowland riparian fencing and planting compared to other FMUs.

Total net load

Total net suspended sediment loads for each scenario are presented in Table 8 and Figure 6. The tables summarise net sediment loads for selected rivers and total net load delivered to the coast from 2021 to 2100, and also provide load reductions achieved relative to the updated 2021 baseline loads for each policy scenario. Mean annual net suspended sediment loads for 2021 are visualised in Figure 7.

Region-wide total net suspended sediment load delivered to the coast for 2021 was 8.3 Mt yr $^{-1}$. The largest net sediment loads occurred in the Whanganui (2.7 Mt yr $^{-1}$) and Manawatū (2.3 Mt yr $^{-1}$) Rivers. By 2100 the total net sediment load delivered to the coast reduces to 4.3 Mt yr $^{-1}$ for PS1 and 3.3 Mt yr $^{-1}$ for PS2. This represents a region-wide net sediment load reduction of 4.0 Mt yr $^{-1}$ (48%) for PS1 and 5.0 Mt yr $^{-1}$ (60%) for PS2 compared to the 2021 baseline loads.

Proportional net suspended sediment load reductions at 2100 vary across FMUs, ranging from 18% to 60% for PS1 and 18% to 74% for PS2. The Ōhau River experiences the smallest reductions, while the Ākitio River (for PS1) and the Turakina River (for PS2) have the largest proportional reductions. Absolute net load reductions for selected rivers by 2100 range from 0.01 to 1.1 Mt yr^{-1} for PS1 and 0.01 to 1.4 Mt yr^{-1} for PS2. The Ōhau River has the smallest absolute load reduction, while the Manawatū and Whanganui Rivers have the largest reductions.

Overall, the projections indicate significant reductions in net suspended sediment loads delivered to the coast by 2100 under both PS1 and PS2 scenarios.

Table 6. Total erosion load and difference from 2021 baseline for each scenario

			erosion (M		Difference from 2021 baseline									
C	F1411	2021	2040	2000	2000	2100	204	40	2060		2080		2100	
Scenario	FMU	2021	2040	2060	2080	2100	Mt yr ⁻¹	%						
	Kai Iwi	0.11	0.10	0.09	0.08	0.07	-0.01	-8%	-0.02	-15%	-0.03	-25%	-0.04	-34%
	Manawatū	2.44	2.14	1.88	1.58	1.27	-0.30	-12%	-0.56	-23%	-0.85	-35%	-1.17	-48%
	Puketoi ki Tai	0.50	0.42	0.35	0.28	0.21	-0.08	-16%	-0.15	-30%	-0.23	-45%	-0.30	-59%
PS1	Rangitīkei-Turakina	1.94	1.72	1.47	1.19	0.90	-0.22	-11%	-0.46	-24%	-0.75	-39%	-1.04	-54%
P31	Waiopehu	0.06	0.05	0.05	0.05	0.05	-0.01	-13%	-0.01	-14%	-0.01	-16%	-0.01	-20%
	Whangaehu	0.97	0.84	0.69	0.53	0.39	-0.13	-14%	-0.28	-29%	-0.44	-45%	-0.58	-60%
	Whanganui	2.79	2.57	2.33	2.03	1.72	-0.22	-8%	-0.46	-16%	-0.76	-27%	-1.07	-38%
	Total	8.80	7.84	6.87	5.74	4.60	-0.96	-11%	-1.93	-22%	-3.06	-35%	-4.20	-48%
	Kai Iwi	0.11	0.09	0.07	0.06	0.06	-0.03	-23%	-0.05	-41%	-0.05	-46%	-0.05	-46%
	Manawatū	2.44	1.69	1.10	1.02	1.02	-0.74	-30%	-1.34	-55%	-1.42	-58%	-1.42	-58%
	Puketoi ki Tai	0.50	0.31	0.17	0.15	0.15	-0.19	-38%	-0.34	-66%	-0.35	-70%	-0.35	-70%
DC2	Rangitīkei-Turakina	1.94	1.27	0.71	0.64	0.64	-0.66	-34%	-1.23	-63%	-1.29	-67%	-1.29	-67%
PS2	Waiopehu	0.06	0.05	0.05	0.04	0.04	-0.01	-16%	-0.01	-20%	-0.01	-21%	-0.01	-21%
	Whangaehu	0.97	0.60	0.31	0.29	0.29	-0.37	-38%	-0.66	-68%	-0.68	-70%	-0.68	-70%
	Whanganui	2.79	2.05	1.47	1.36	1.35	-0.73	-26%	-1.32	-47%	-1.43	-51%	-1.44	-52%
	Total	8.80	6.06	3.87	3.57	3.55	-2.74	-31%	-4.93	-56%	-5.23	-59%	-5.25	-60%

Table 7 Proportion of erosion load contribution by each erosion process at 2021 baseline

Proportion erosion process contribution at 2021 baseline (%)

FMU	Shallow landslide erosion	Earthflow erosion	Gully erosion	Surficial erosion	Bank erosion
Kai Iwi	77	0	18	5	<1
Manawatū	55	2	24	11	8
Puketoi ki Tai	72	18	0	8	3
Rangitīkei-Turakina	66	1	22	7	4
Waiopehu	33	0	0	35	32
Whangaehu	76	<1	13	6	6
Whanganui	76	3	4	14	3
Region-wide	67	3	15	10	5

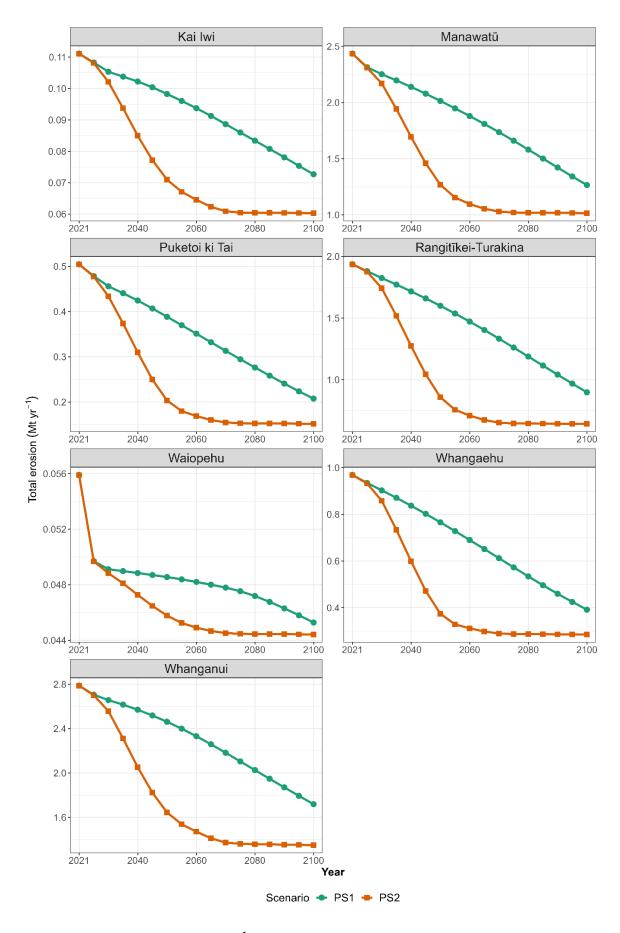


Figure 3. Total erosion loads (Mt yr^{-1}) summarised by FMU for PS1 and PS2 at 5-year intervals.

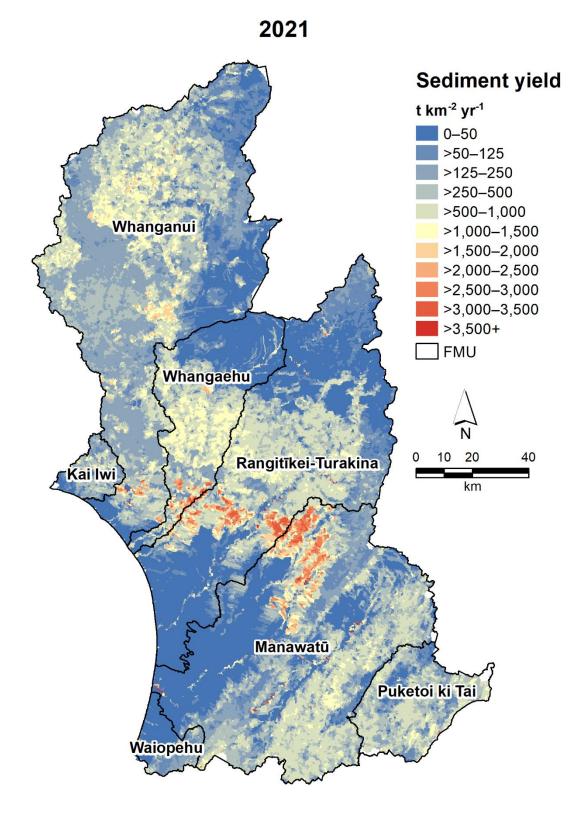


Figure 4. Mean annual suspended sediment yield (t km⁻² yr⁻¹) at the updated 2021 baseline.

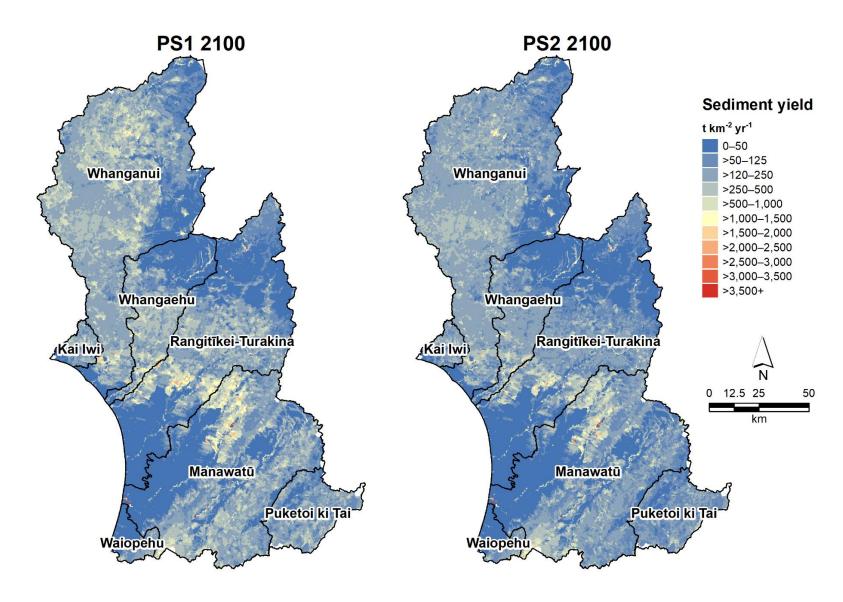


Figure 5. Mean annual suspended sediment yield (t km⁻² yr⁻¹) for PS1 and PS2 at 2100.

Table 8. Total net load and difference from 2021 of selected rivers for PS1 and PS2

	Total net load (Mt yr ⁻¹)								Difference from 2021								
6	D *	2024	2040	2000	2000	2100	20	40	20	60	20	80	21	00			
Scenario	River	2021	2040	2060	2080	2100	Mt yr ⁻¹	%	Mt yr ⁻¹	%	Mt yr ⁻¹	%	Mt yr ⁻¹	%			
	Kai iwi	0.06	0.06	0.05	0.05	0.04	-0.01	-8%	-0.01	-16%	-0.02	-25%	-0.02	-35%			
	Whanganui	2.65	2.44	2.21	1.92	1.63	-0.21	-8%	-0.43	-16%	-0.72	-27%	-1.02	-38%			
	Whangaehu	0.92	0.80	0.66	0.51	0.37	-0.13	-14%	-0.27	-29%	-0.41	-45%	-0.55	-59%			
	Turakina	0.65	0.58	0.48	0.37	0.26	-0.07	-11%	-0.17	-26%	-0.28	-43%	-0.39	-59%			
PS1	Rangitīkei	1.17	1.03	0.90	0.74	0.57	-0.14	-12%	-0.27	-23%	-0.43	-37%	-0.60	-51%			
	Manawatū	2.30	2.01	1.77	1.48	1.18	-0.29	-12%	-0.53	-23%	-0.82	-35%	-1.12	-49%			
	Ākitio	0.22	0.18	0.15	0.12	0.09	-0.04	-18%	-0.07	-32%	-0.10	-47%	-0.13	-60%			
	Ōhau	0.04	0.03	0.03	0.03	0.03	-0.01	-13%	-0.01	-13%	-0.01	-15%	-0.01	-18%			
	Total*	8.33	7.41	6.48	5.41	4.33	-0.92	-11%	-1.84	-22%	-2.92	-35%	-4.00	-48%			
	Kai iwi	0.06	0.05	0.04	0.04	0.04	-0.02	-24%	-0.03	-41%	-0.03	-44%	-0.03	-44%			
	Whanganui	2.65	1.95	1.40	1.29	1.28	-0.70	-26%	-1.25	-47%	-1.36	-51%	-1.37	-52%			
	Whangaehu	0.92	0.57	0.30	0.27	0.27	-0.35	-38%	-0.63	-68%	-0.65	-70%	-0.65	-70%			
	Turakina	0.65	0.41	0.19	0.17	0.17	-0.24	-37%	-0.46	-70%	-0.48	-74%	-0.48	-74%			
PS2	Rangitīkei	1.17	0.78	0.46	0.42	0.42	-0.39	-33%	-0.71	-60%	-0.75	-64%	-0.75	-64%			
	Manawatū	2.30	1.59	1.02	0.95	0.95	-0.71	-31%	-1.28	-55%	-1.35	-59%	-1.35	-59%			
	Ākitio	0.22	0.13	0.07	0.07	0.07	-0.08	-39%	-0.14	-66%	-0.15	-69%	-0.15	-69%			
	Ōhau	0.04	0.03	0.03	0.03	0.03	-0.01	-15%	-0.01	-18%	-0.01	-18%	-0.01	-18%			
=	Total*	8.33	5.72	3.64	3.35	3.34	-2.61	-31%	-4.69	-56%	-4.98	-60%	-4.99	-60%			

 $^{^{\}ast}$ 'Total' refers to the total net load delivered to the coast for the whole region.

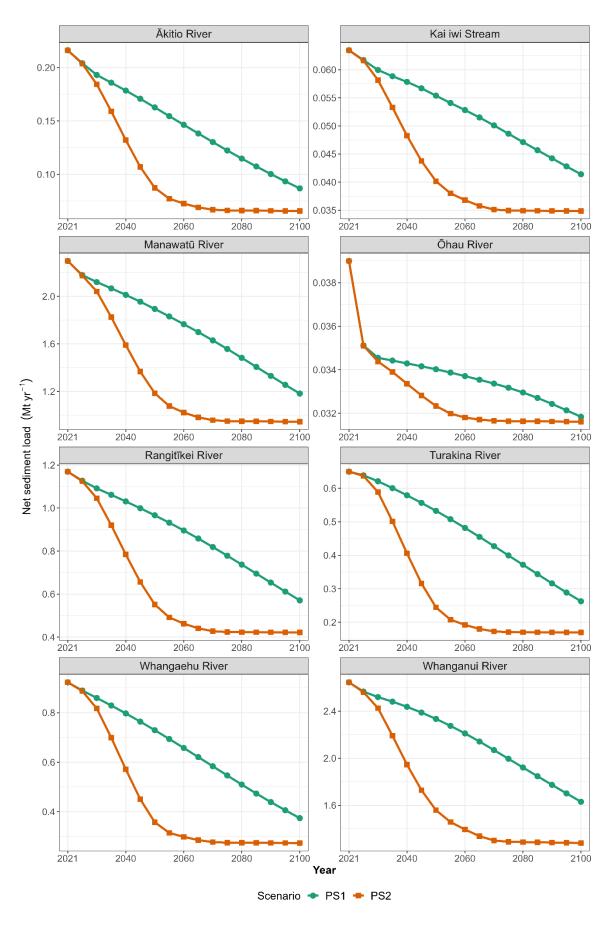


Figure 6. Total net suspended sediment load (Mt yr^{-1}) for selected river catchments for PS1 and PS2 at 5-year intervals.

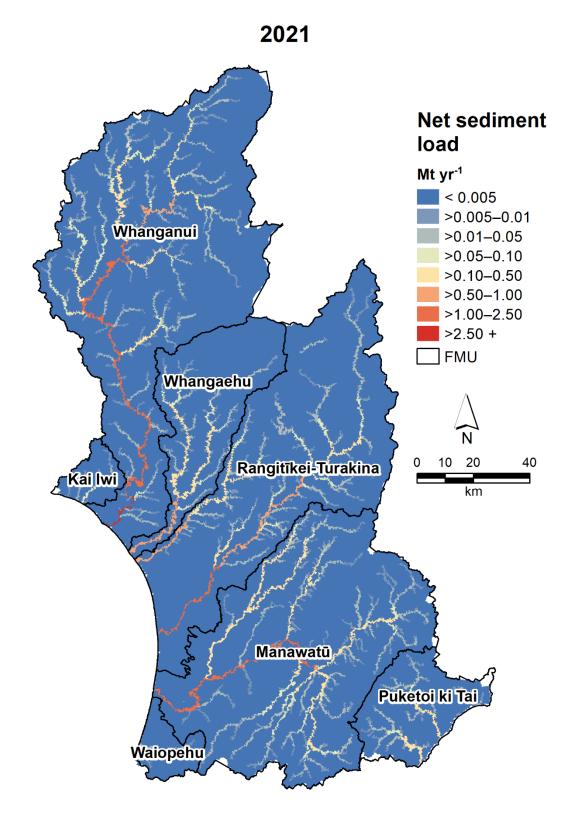


Figure 7. Mean annual net suspended sediment load (Mt yr⁻¹) at the updated 2021 baseline.

5.2 Sediment load reductions required to meet NPS-FM visual clarity attribute bands

The required reductions in suspended sediment load to meet the NPS-FM 2020 attribute bands were modelled as proportional and absolute reductions for each REC2 segment. The results are summarised in Table 9 for PS1 and in Table 10 for PS2, and visualised in Figures 8–11 for proportional reductions and Figures 12–15 for absolute load reductions. Appendix F provides additional summaries of the length and proportions of REC2 segments achieving NPS-FM 2020 attribute bands according to stream order for each FMU.

The region-wide proportions of REC2 segments achieving A band, B band, and national bottom line (NBL) in 2021 were 38%, 60%, and 75%, respectively. By 2100 these proportions increase to 72%, 84%, and 90% for PS1, and 74%, 85%, and 91% for PS2. For higher-order REC2 segments, the proportion achieving each attribute band is low compared to lower-order segments. For example, in 2021, 38–43% of REC2 segments from stream orders ≤ 5 achieved the A band, but only 8% and 0% of segments from stream orders 6 and 7, respectively. Similarly, 70–78% of REC2 segments from stream orders ≤ 5 achieved the NBL, but only 46% and 13% of segments from stream orders 6 and 7, respectively. This is probably because higher-order streams require larger absolute load reductions that depend on reductions occurring throughout the upstream catchment area.

Large proportional reductions required at 2021 occur throughout the region; however, the highest reductions are particularly evident in the lowland coastal areas of Manawatū and Rangitīkei-Turakina, and are also observed along a number of higher-order REC2 segments (Figure 8). The proportion of REC2 segments achieving the NBL increases over time for PS1 and PS2, but this occurs earlier for PS2 than for PS1 due to the earlier implementation of SLUI erosion mitigation in upstream catchment areas. There are still some lowland REC2 segments that require proportional reductions to achieve the NBL by 2100, although these represent low absolute loads (Figure 13).

The regional pattern of sediment load reductions and achieved attribute states can be attributed to three main factors:

- the focus of SLUI erosion mitigation works on hill country areas, which determines the selection order of new farm plans
- extensive implementation of riparian fencing and planting in lowland areas by 2025
- the spatial variation in visual clarity thresholds, which are based on the spatial distribution of suspended sediment classes used to define threshold values.

Sediment load reductions in the hill country were modelled based on the implementation of specific works within the SLUI programme. These works primarily target farms with highly erodible hill country. Within SLUI, priority is given to top and high priority farms, which are typically found in hill country areas. When identifying new farms for WFPs, these top and high priority farms are prioritised for selection. Most lowland farms are classified as 'not' priority and are considered the lowest priority in SLUI. As a result, the largest reductions in sediment load for lowland 'not' priority farms are expected to occur once

stream fencing and planting initiatives are completed by 2025. Further reductions in sediment load for 'not' priority farms where some mass movement erosion occurs will mostly take place beyond 2025.

Riparian fencing implementation focuses on lowland streams. The current extent of fencing is determined based on available spatial data on riparian fencing and planting. Estimates from the SRDM are also used, according to district and land use. The baseline visual clarity is linked to the updated 2021 baseline sediment load estimate, which is influenced by the estimated extent of current fencing. As a result, the potential sediment load reductions that can be achieved are constrained by the length of the remaining stream network available for fencing. While SRDM provides some ability to estimate the extent of fencing, particularly at a district and land-use level, this approach does introduce some unknown uncertainty, especially at the level of individual REC2 segment watersheds.

The attribute band visual clarity thresholds for a given REC2 segment are determined by the assigned suspended sediment class. There are four suspended sediment classes, and although they consider factors such as climate, topography, and geology via the River Environment Classification to assign the class (Ministry for the Environment 2020), this can result in abrupt changes in visual clarity thresholds and required load reductions between adjacent REC2 segments (Appendix C).

Table 9. Length and proportion of REC2 segments achieving each visual clarity attribute band, summarised by stream order for PS1

						REC2 se	gments achiev	ing for selec	ted years			
PS1	Stream order	Total length km	20	21	204	40	20	60	20	80	210	00
	order	KIII	km	%	km	%	km	%	km	%	km	%
	1	18,148	7,221	40%	8,733	48%	10,313	57%	11,827	65%	12,890	71%
	2	9,101	3,565	39%	4,299	47%	5,036	55%	5,861	64%	6,527	72%
	3	4,521	1,779	39%	2,084	46%	2,455	54%	2,936	65%	3,290	73%
A l l	4	2,381	905	38%	1,101	46%	1,349	57%	1,599	67%	1,845	78%
A band	5	1,388	593	43%	642	46%	693	50%	903	65%	1,052	76%
	6	676	52	8%	88	13%	158	23%	318	47%	519	77%
	7	505	-	0%	-	0%	5	1%	117	23%	189	37%
	Total	36,720	14,115	38%	16,947	46%	20,009	54%	23,560	64%	26,312	72%
	1	18,148	11,386	63%	12,653	70%	13,726	76%	14,555	80%	15,180	84%
	2	9,101	5,619	62%	6,225	68%	6,797	75%	7,262	80%	7,611	84%
	3	4,521	2,762	61%	3,045	67%	3,333	74%	3,631	80%	3,828	85%
D. la a sa al	4	2,381	1,399	59%	1,532	64%	1,718	72%	1,917	81%	2,078	87%
B band	5	1,388	793	57%	889	64%	1,020	73%	1,127	81%	1,224	88%
	6	676	130	19%	223	33%	333	49%	508	75%	598	88%
	7	505	4	1%	39	8%	119	23%	178	35%	241	48%
	Total	36,720	22,094	60%	24,607	67%	27,047	74%	29,179	79 %	30,760	84%
	1	18,148	14,116	78%	15,061	83%	15,505	85%	15,914	88%	16,239	89%
	2	9,101	6,909	76%	7,434	82%	7,703	85%	7,943	87%	8,124	89%
	3	4,521	3,412	75%	3,671	81%	3,835	85%	3,953	87%	4,063	90%
NBL	4	2,381	1,751	74%	1,917	81%	2,021	85%	2,137	90%	2,210	93%
INDL	5	1,388	978	70%	1,075	77%	1,133	82%	1,219	88%	1,297	93%
	6	676	308	46%	398	59%	485	72%	595	88%	634	94%
	7	505	66	13%	141	28%	189	37%	241	48%	337	67%
	Total	36,720	27,540	75%	29,699	81%	30,871	84%	32,002	87%	32,904	90%

Table 10. Length and proportion of REC2 segments achieving each visual clarity attribute band, summarised by stream order for PS2

-						REC2 se	gments achiev	ring for selec	ted years			
PS2	Stream order	Total length km	20	21	20	40	20	60	20	80	210	00
	order	KIII	km	%	km	%	km	%	km	%	km	%
	1	18,148	7,221	40%	11,383	63%	12,932	71%	13,082	72%	13,149	72%
	2	9,101	3,565	39%	5,658	62%	6,539	72%	6,627	73%	6,656	73%
	3	4,521	1,779	39%	2,798	62%	3,338	74%	3,385	75%	3,395	75%
A l	4	2,381	905	38%	1,541	65%	1,949	82%	1,959	82%	1,961	82%
A band	5	1,388	593	43%	872	63%	1,129	81%	1,138	82%	1,142	82%
	6	676	52	8%	246	36%	557	82%	619	92%	619	92%
	7	505	-	0%	62	12%	260	52%	286	57%	286	57%
	Total	36,720	14,115	38%	22,561	61%	26,704	73%	27,096	74%	27,208	74%
	1	18,148	11,386	63%	14,399	79%	15,185	84%	15,250	84%	15,298	84%
	2	9,101	5,619	62%	7,173	79%	7,613	84%	7,669	84%	7,689	84%
	3	4,521	2,762	61%	3,577	79%	3,850	85%	3,873	86%	3,882	86%
B band	4	2,381	1,399	59%	1,895	80%	2,113	89%	2,125	89%	2,127	89%
b band	5	1,388	793	57%	1,086	78%	1,248	90%	1,254	90%	1,254	90%
	6	676	130	19%	446	66%	670	99%	670	99%	670	99%
	7	505	4	1%	164	33%	297	59%	427	84%	427	85%
	Total	36,720	22,094	60%	28,740	78%	30,976	84%	31,268	85%	31,346	85%
	1	18,148	14,116	78%	15,846	87%	16,249	90%	16,300	90%	16,336	90%
	2	9,101	6,909	76%	7,903	87%	8,132	89%	8,168	90%	8,180	90%
	3	4,521	3,412	75%	3,930	87%	4,079	90%	4,091	90%	4,093	91%
NBL	4	2,381	1,751	74%	2,086	88%	2,225	93%	2,233	94%	2,233	94%
INDL	5	1,388	978	70%	1,169	84%	1,296	93%	1,299	94%	1,299	94%
	6	676	308	46%	577	85%	671	99%	671	99%	671	99%
	7	505	66	13%	238	47%	430	85%	443	88%	443	88%
	Total	36,720	27,540	75%	31,748	86%	33,082	90%	33,205	90%	33,254	91%

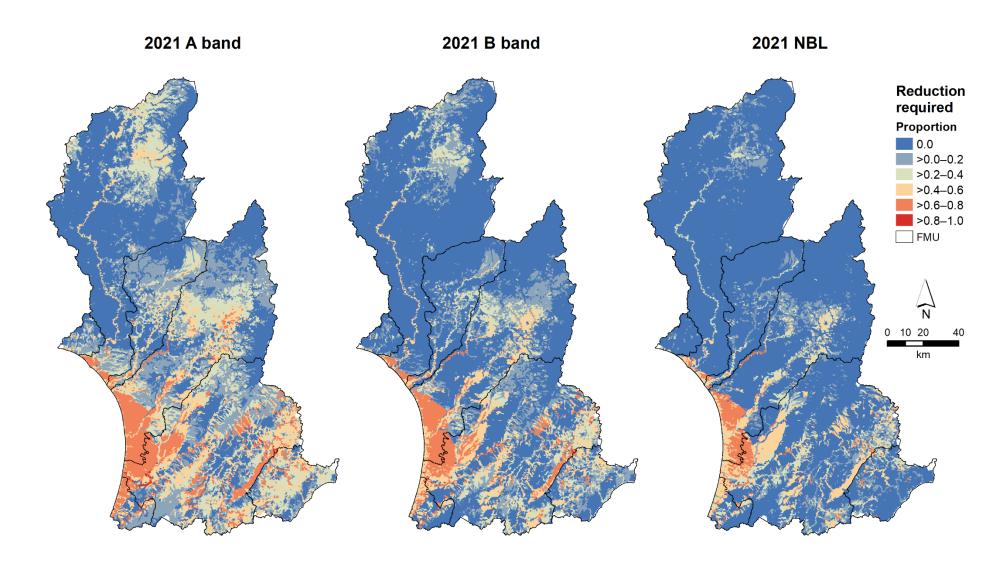


Figure 8. Proportional reduction in net load required to achieve NPS-FM visual clarity attribute bands and NBL at the updated 2021 baseline.

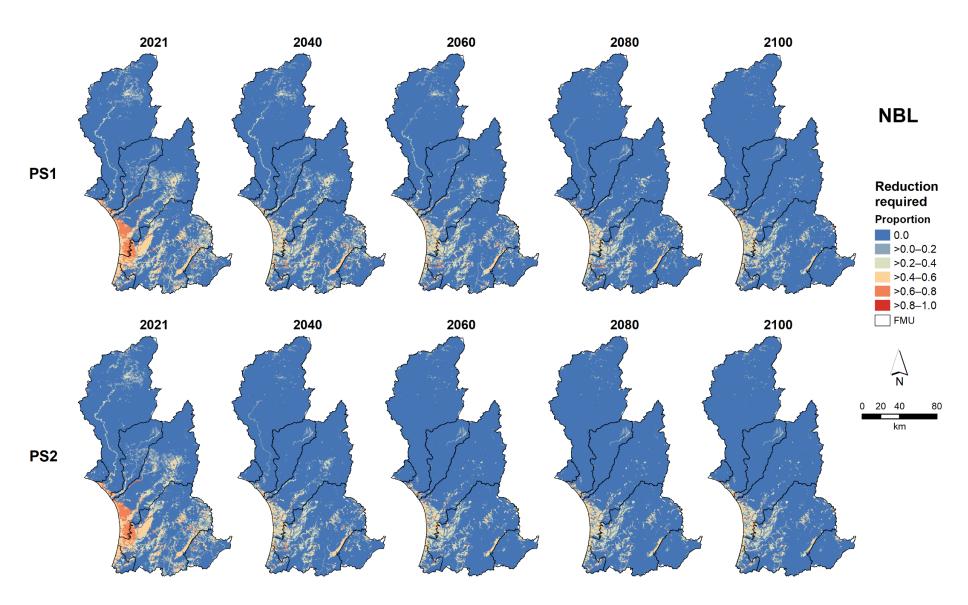


Figure 9. Proportional reduction in net load required to achieve NPS-FM visual clarity NBL from 2021 to 2100 for PS1 and PS2.

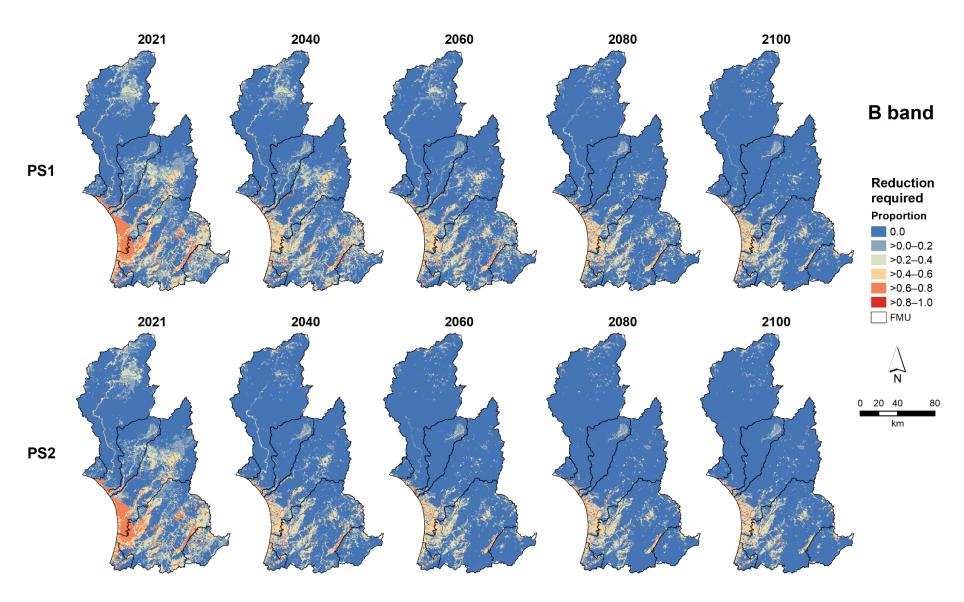


Figure 10. Proportional reduction in net load required to achieve NPS-FM visual clarity B band from 2021 to 2100 for PS1 and PS2.

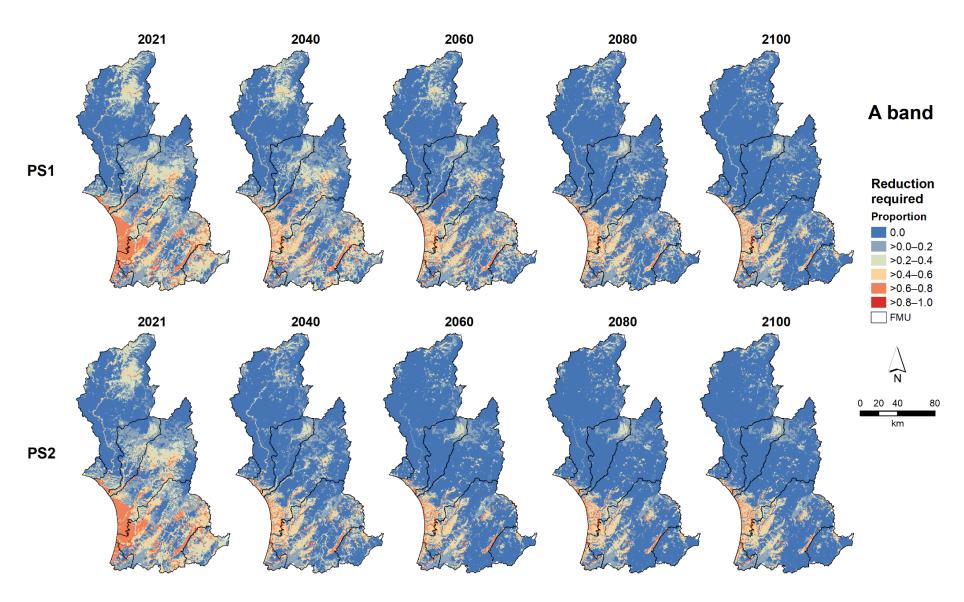


Figure 11. Proportional reduction in net load required to achieve NPS-FM visual clarity A band from 2021 to 2100 for PS1 and PS2.

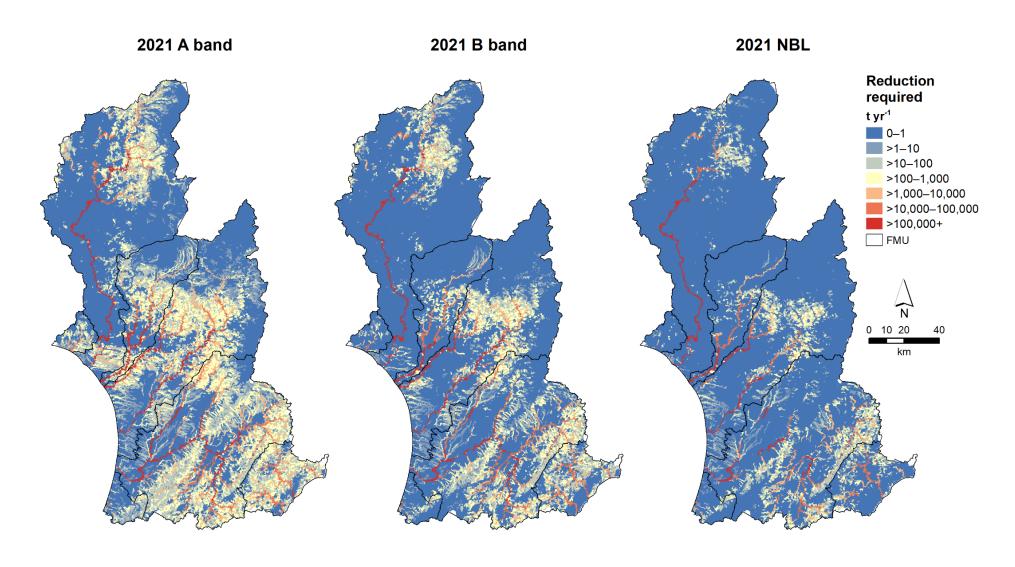


Figure 12. Absolute net load reduction required to achieve NPS-FM visual clarity attribute bands and NBL at the updated 2021 baseline.

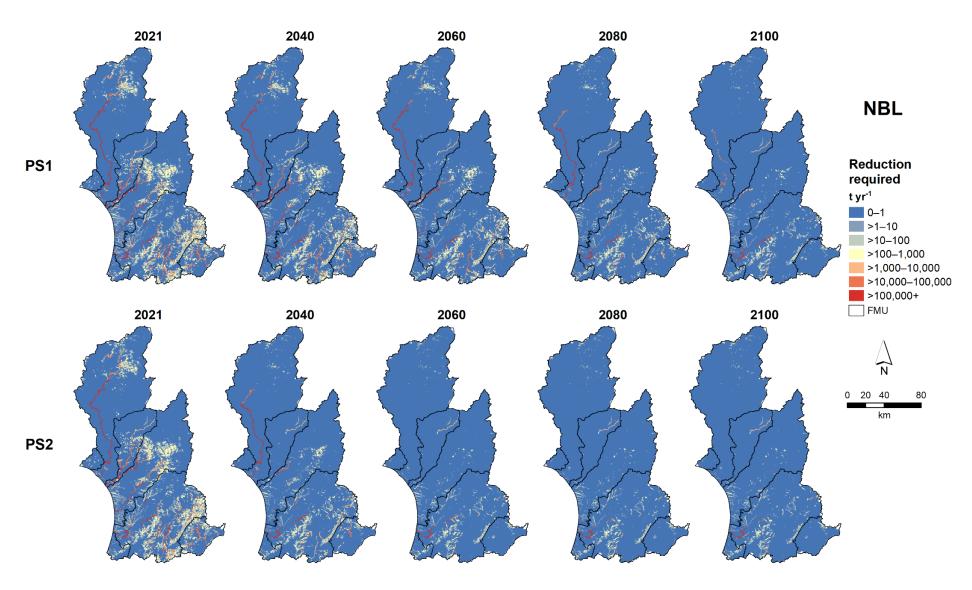


Figure 13. Absolute net load reduction required to achieve NPS-FM visual clarity NBL from 2021 to 2100 for PS1 and PS2.

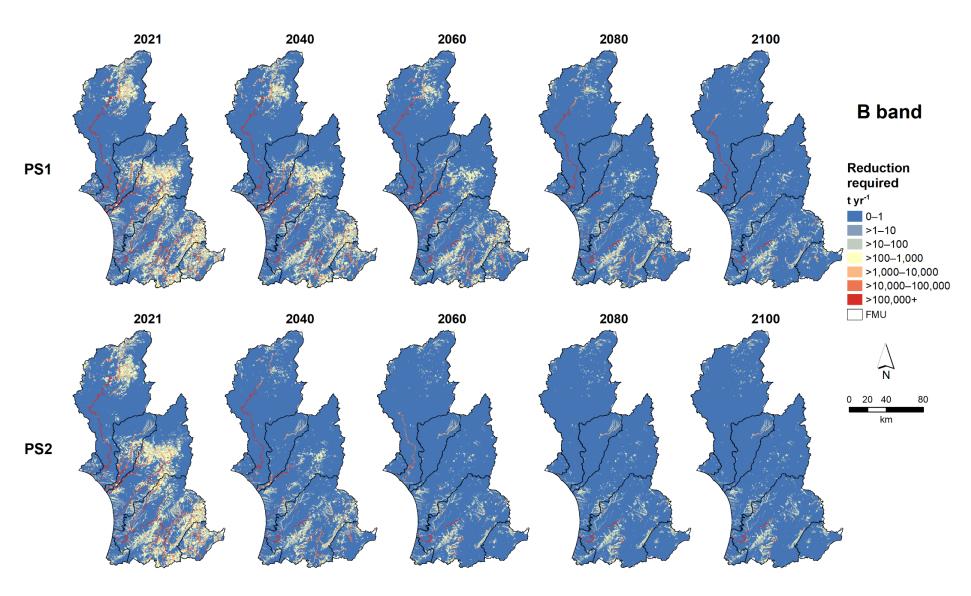


Figure 14. Absolute net load reduction required to achieve NPS-FM visual clarity B band from 2021 to 2100 for PS1 and PS2.

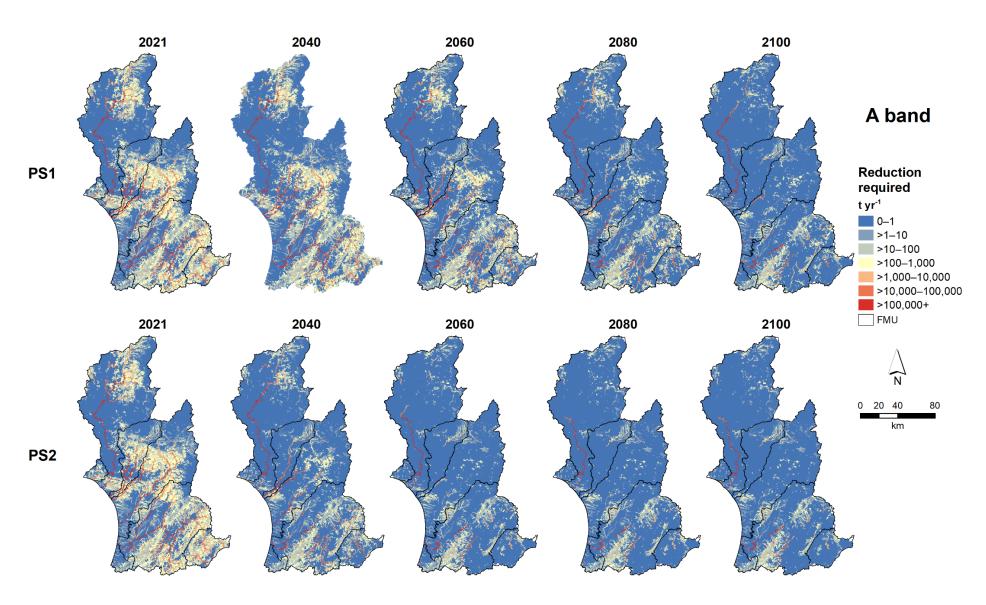


Figure 15. Absolute net load reduction required to achieve NPS-FM visual clarity A band from 2021 to 2100 for PS1 and PS2.

5.3 Impact of climate change

5.3.1 Suspended sediment loads

Suspended sediment loads under projected climate change were modelled for PS1 and PS2. The results are reported as the minimum, median and maximum based on the six regional climate models (RCMs) for each RCP at mid- (2040) and late (2090) century.

Region-wide total erosion loads under climate change are summarised in Table 11 and visualised in Figure 16. Projected mean annual suspended sediment yields are shown for the minimum RCP2.6 and maximum RCP8.5 at mid- and late century in Figure 17 and Figure 18. Total erosion loads for individual FMUs are provided in Tables 12–15 and shown in Figure 19.

The modelled climate change projections result in a wide range of predicted changes to sediment loads. This reflects the variability between each of the climate models and the diverging climate trajectories represented by each RCP. RCP2.6 represents a greenhouse gas mitigation pathway resulting in the lowest sediment load increases, with late century being lower than mid-century. RCP4.5 and RCP6.0 are stabilisation pathways, and RCP8.5 represents a worst-case scenario with very high greenhouse gas concentrations that result in large, predicted increases in sediment load. Therefore, total erosion is expected to increase from RCP 2.6 to RCP 8.5 at mid- and late century, with more pronounced differences between each RCP observed at late century due to the range in greenhouse gas trajectories represented across the RCPs (Figure 16).

For PS1 the total erosion across all RCPs is estimated to be between 8.4 and 12.5 Mt yr⁻¹ for mid-century, and between 4.9 and 10.1 Mt yr⁻¹ for late century. This represents a difference of 7% to 46% for mid-century and -4% to +79% for late century, compared to loads modelled without the impacts of climate change.

For PS2, the total erosion across all RCPs is estimated to range from 6.2 to 9.2 Mt yr⁻¹ for mid-century, and from 3.1 to 5.8 Mt yr⁻¹ for late century. This corresponds to a change of 3% to 41% for mid-century and -16% to +58% for late century. Only the minimum and median projections of RCP2.6 at late century shows a decrease in sediment load.

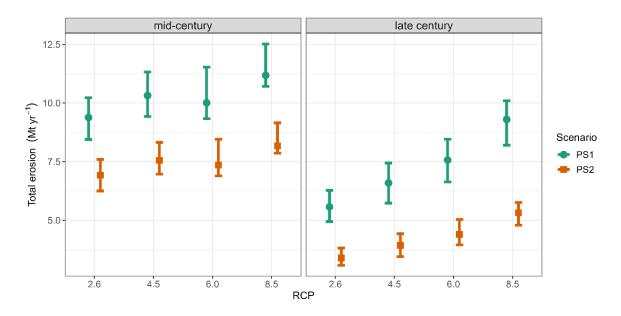


Figure 16. Total erosion loads under projected climate change for the Horizons region at mid- and late century, by RCP for each erosion mitigation scenario.

The projected changes in total erosion due to climate change vary across the region, resulting in different proportional changes for each FMU. The Waiopehu, Kai Iwi, and Whanganui FMUs show the largest reductions or smallest increases in erosion at both mid- and late century. In contrast, the Manawatū and Rangitīkei-Turakina FMUs experience the largest increases in erosion (Tables 12–15). There is a west–east pattern, whereby FMUs dominated by western coastal catchments exhibit smaller increases or even decreases in sediment load compared to the rest of the region. This pattern is also evident in the spatial yield maps (Figures 17 & 18), with minimal changes observed in lowland areas near the coast compared to inland hill country. The Waiopehu FMU shows a significant range of values compared to other FMUs, indicating greater variability between climate model projections in that specific area (Figure 19).

Table 11. Total erosion by mid- and late century for each climate change scenario, represented by minimum, median, and maximum results for each RCP summarised for the whole region

Period	Scenario	Baseline load (Mt yr ⁻¹)	Statistic			erosion yr ⁻¹)		Differen	nce from m	id- and la	te century (Mt yı		oads witho	out climat	e change
		2040 or 2090		RCP2.6	RCP4.5	RCP6.0	RCP8.5	RC	P2.6	RC	P4.5	RC	P6.0	RC	P8.5
			min	8.4	9.4	9.3	10.7	0.6	7%	1.6	19%	1.5	18%	2.9	34%
>	PS1	7.84	med	9.4	10.3	10.0	11.2	1.5	16%	2.5	26%	2.2	23%	3.3	36%
entur			max	10.2	11.3	11.5	12.5	2.4	23%	3.5	34%	3.7	36%	4.7	46%
Mid-century			min	6.2	7.0	6.9	7.9	0.2	3%	0.9	14%	0.8	13%	1.8	29%
Σ	PS2	6.06	med	6.9	7.6	7.4	8.2	0.9	12%	1.5	22%	1.3	19%	2.1	30%
			max	7.6	8.3	8.5	9.2	1.5	20%	2.3	30%	2.4	31%	3.1	41%
			min	4.9	5.7	6.6	8.2	-0.2	-4%	0.6	12%	1.5	30%	3.0	62%
>	PS1	5.16	med	5.6	6.6	7.6	9.3	0.4	7%	1.4	26%	2.4	43%	4.1	74%
entur			max	6.3	7.4	8.5	10.1	1.1	18%	2.3	36%	3.3	53%	4.9	79%
Late century			min	3.1	3.5	4.0	4.8	-0.5	-16%	-0.1	-3%	0.4	13%	1.2	40%
L	PS2	3.56	med	3.4	3.9	4.4	5.3	-0.2	-5%	0.4	11%	0.8	25%	1.8	52%
			max	3.8	4.4	5.0	5.8	0.3	7%	0.9	23%	1.5	39%	2.2	58%

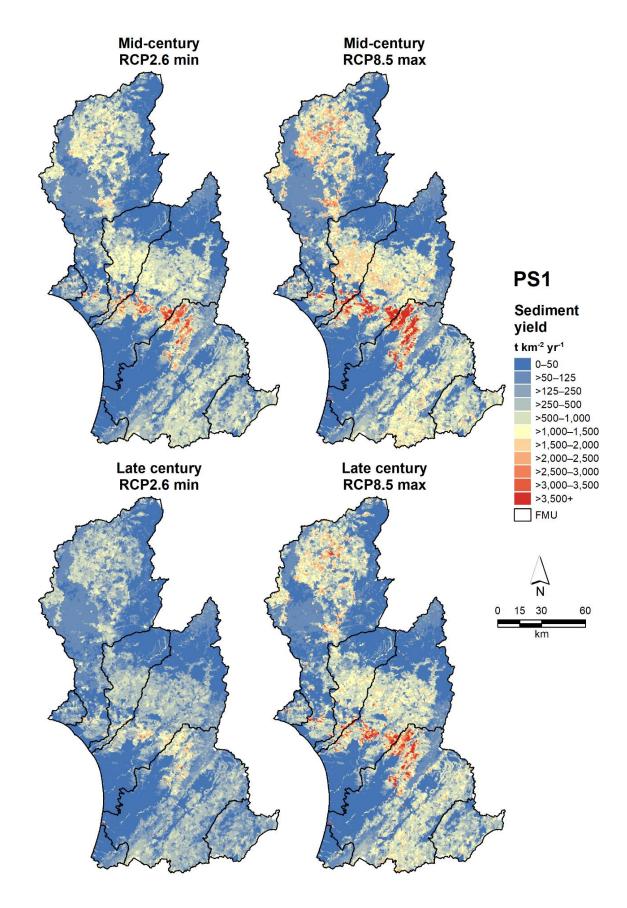


Figure 17. Mean annual suspended sediment yield under projected climate change at midand late century, represented by RCP2.6 minimum and RCP8.5 maximum, for PS1.

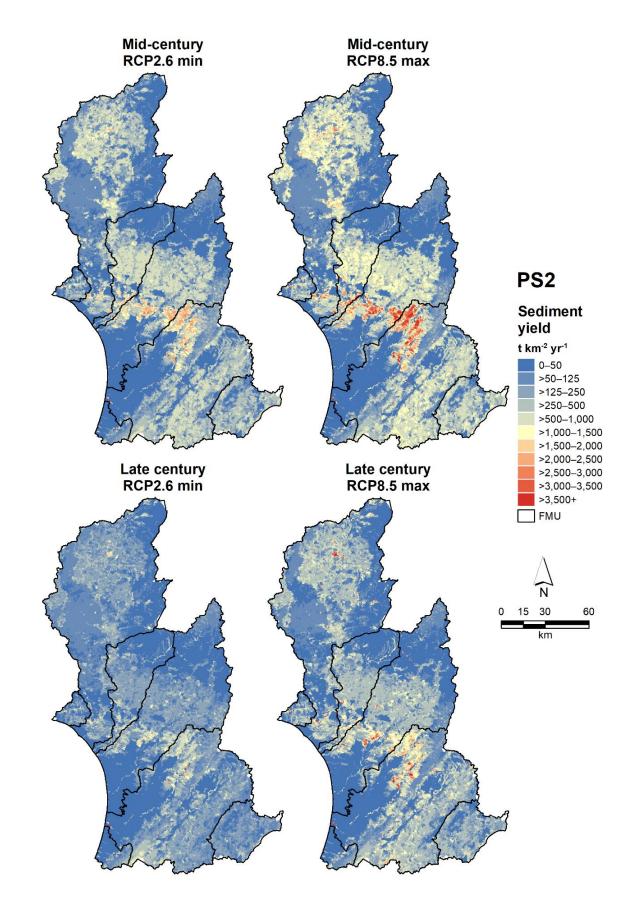


Figure 18. Mean annual suspended sediment yield under projected climate change at midand late century, represented by RCP2.6 minimum and RCP8.5 maximum, for PS2.

Table 12. Total erosion loads at mid-century represented by minimum, median, and maximum results for each RCP, summarised by FMU for PS1

DC1	FRALL	Baseline load	Ca-ai-ai-	Т	otal erosi	on (Mt yr⁻	·1)	Differen	ce from m	id-century	baseline l	oad withou	ut climate	change (N	lt yr ⁻¹ , %)
PS1	FMU	(Mt yr ⁻¹) 2040	Statistic	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCI	P2.6	RCI	P4.5	RCI	P6.0	RC	P8.5
			min	0.10	0.10	0.10	0.11	-0.01	-7%	0.00	2%	0.00	-1%	0.01	13%
	Kai Iwi	0.10	med	0.10	0.11	0.11	0.12	0.00	1%	0.01	11%	0.01	7%	0.02	17%
			max	0.11	0.12	0.13	0.13	0.01	10%	0.02	19%	0.03	22%	0.03	28%
			min	2.47	2.76	2.73	3.15	0.33	13%	0.62	25%	0.59	24%	1.01	41%
	Manawatū	2.14	med	2.78	3.05	2.96	3.32	0.64	23%	0.91	33%	0.82	30%	1.18	42%
			max	3.09	3.42	3.48	3.76	0.95	31%	1.28	41%	1.34	43%	1.62	52%
			min	0.47	0.53	0.52	0.59	0.05	10%	0.10	22%	0.09	20%	0.17	35%
	Puketoi ki Tai	0.42	med	0.53	0.57	0.56	0.62	0.10	19%	0.15	28%	0.13	25%	0.19	37%
			max	0.57	0.63	0.64	0.69	0.14	25%	0.20	36%	0.22	38%	0.27	48%
Mid-century	Damaitīlai		min	1.98	2.18	2.18	2.49	0.26	13%	0.46	23%	0.46	23%	0.78	39%
l-cer	Rangitīkei- Turakina	1.72	med	2.20	2.42	2.34	2.63	0.48	22%	0.70	32%	0.62	28%	0.92	42%
Mio			max	2.35	2.61	2.66	2.90	0.63	27%	0.90	38%	0.94	40%	1.18	50%
			min	0.05	0.05	0.05	0.05	0.00	-7%	0.00	2%	0.00	-2%	0.00	7%
	Waiopehu ^a	0.05	med	0.05	0.05	0.05	0.05	0.00	2%	0.00	0%	0.00	2%	0.00	4%
			max	0.06	0.06	0.05	0.06	0.01	16%	0.01	10%	0.00	7%	0.01	12%
			min	0.94	1.04	1.03	1.18	0.10	11%	0.20	22%	0.19	21%	0.34	37%
	Whangaehu	0.84	med	1.05	1.15	1.11	1.24	0.21	20%	0.31	30%	0.27	26%	0.41	39%
			max	1.13	1.25	1.26	1.38	0.29	26%	0.41	37%	0.43	38%	0.54	48%
			min	2.46	2.77	2.73	3.13	-0.11	-5%	0.20	8%	0.16	6%	0.56	23%
	Whanganui	2.57	med	2.68	2.97	2.88	3.20	0.11	4%	0.40	15%	0.31	12%	0.63	24%
			max	2.93	3.24	3.31	3.60	0.36	12%	0.67	23%	0.74	25%	1.03	35%

^a The selected RCMs do not consistently equate to the equivalent min/median/max values for Waiopehu due to relative differences in total erosion between RCMs at catchment/FMU versus regional scales. For consistency, we present sediment load results for the selected RCMs across all sub-catchments, which allows comparison between sub-catchments for the same RCM.

Table 13. Total erosion loads at late century represented by minimum, median, and maximum results for each RCP, summarised by FMU for PS1

DC1	FRAIL	Baseline load	61-11-11-	Т	otal erosio	on (Mt yr	¹)	Differen	ce from lat	te-century	baseline l	oad withou	ıt climate	change (M	t yr ⁻¹ , %)
PS1	FMU	(Mt yr ⁻¹) 2090	Statistic	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCI	P2.6	RCI	P4.5	RCI	P6.0	RCI	P8.5
			min	0.06	0.07	0.08	0.10	-0.01	-22%	0.00	-6%	0.01	8%	0.02	34%
	Kai Iwi	0.08	med	0.07	0.08	0.09	0.11	-0.01	-8%	0.00	6%	0.02	22%	0.04	49%
			max	0.08	0.09	0.10	0.12	0.00	1%	0.02	19%	0.03	33%	0.04	56%
			min	1.52	1.77	2.04	2.53	0.10	6%	0.34	23%	0.62	41%	1.10	73%
	Manawatū	1.42	med	1.74	2.03	2.37	2.89	0.32	18%	0.61	35%	0.95	55%	1.47	85%
			max	1.94	2.34	2.67	3.15	0.52	27%	0.92	47%	1.25	64%	1.73	89%
			min	0.25	0.28	0.33	0.40	0.01	3%	0.04	17%	0.09	35%	0.16	64%
	Puketoi ki Tai	0.24	med	0.27	0.32	0.37	0.46	0.03	12%	0.08	30%	0.13	48%	0.21	78%
			max	0.31	0.37	0.41	0.49	0.07	21%	0.13	41%	0.17	54%	0.25	82%
Late century			min	1.08	1.26	1.48	1.82	0.04	4%	0.22	20%	0.43	40%	0.78	72%
cen	Rangitīkei- Turakina	1.04	med	1.23	1.47	1.69	2.08	0.19	15%	0.43	35%	0.65	53%	1.04	85%
Late	Tarakina		max	1.38	1.65	1.85	2.28	0.34	25%	0.61	44%	0.81	59%	1.24	90%
			min	0.04	0.04	0.05	0.05	0.00	-7%	0.00	-9%	0.00	0%	0.01	12%
	Waiopehu	0.05	med	0.04	0.05	0.05	0.05	0.00	-5%	0.00	2%	0.01	11%	0.01	16%
			max	0.05	0.05	0.06	0.06	0.00	8%	0.01	16%	0.01	26%	0.01	18%
			min	0.46	0.53	0.61	0.76	0.00	0%	0.07	15%	0.15	33%	0.30	65%
	Whangaehu	0.46	med	0.52	0.62	0.71	0.87	0.06	12%	0.16	30%	0.25	48%	0.41	78%
			max	0.59	0.70	0.79	0.95	0.13	22%	0.24	41%	0.33	57%	0.49	84%
			min	1.53	1.77	2.05	2.54	-0.34	-22%	-0.10	-7%	0.18	12%	0.67	44%
	Whanganui	1.87	med	1.69	2.03	2.28	2.84	-0.18	-11%	0.15	9%	0.41	24%	0.96	57%
	J		max	1.93	2.24	2.57	3.05	0.06	3%	0.37	19%	0.70	36%	1.18	61%

Table 14. Total erosion loads at mid-century represented by minimum, median, and maximum results for each RCP, summarised by FMU for PS2

		Baseline load	.	Т	otal erosi	on (Mt yr⁻	·¹)	Differen	ce from mi	d-century	baseline l	oad withou	ıt climate	change (M	t yr ⁻¹ , %)
PS2	FMU	(Mt yr ⁻¹) 2040	Statistics	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RC	P2.6	RCI	P4.5	RCF	P6.0	RCI	P8.5
			min	0.08	0.08	0.08	0.09	-0.01	-13%	0.00	-4%	-0.01	-7%	0.00	7%
	Kai Iwi	0.09	med	0.08	0.09	0.09	0.09	0.00	-5%	0.00	5%	0.00	0%	0.01	10%
			max	0.09	0.10	0.10	0.11	0.00	4%	0.01	13%	0.02	17%	0.02	22%
			min	1.92	2.14	2.12	2.43	0.23	12%	0.45	23%	0.42	22%	0.73	38%
	Manawatū	1.69	med	2.16	2.35	2.29	2.55	0.46	21%	0.65	30%	0.59	27%	0.85	40%
			max	2.41	2.64	2.68	2.88	0.71	30%	0.94	39%	0.98	41%	1.19	49%
			min	0.33	0.37	0.37	0.42	0.02	7%	0.06	19%	0.06	17%	0.11	32%
	Puketoi ki Tai	0.31	med	0.37	0.40	0.39	0.43	0.06	16%	0.09	24%	0.08	22%	0.12	33%
			max	0.40	0.44	0.45	0.49	0.09	23%	0.13	33%	0.14	35%	0.18	44%
Mid-century	Damaitīles:		min	1.43	1.57	1.58	1.79	0.15	11%	0.30	21%	0.30	21%	0.52	36%
-cer	Rangitīkei- Turakina	1.27	med	1.59	1.74	1.68	1.89	0.32	20%	0.46	29%	0.41	26%	0.61	39%
Α̈́			max	1.70	1.88	1.91	2.08	0.43	25%	0.61	36%	0.64	37%	0.80	47%
			min	0.04	0.05	0.05	0.05	0.00	-7%	0.00	2%	0.00	-2%	0.00	7%
	Waiopehu ^a	0.05	med	0.05	0.05	0.05	0.05	0.00	2%	0.00	-2%	0.00	2%	0.00	2%
			max	0.06	0.05	0.05	0.05	0.01	16%	0.01	11%	0.00	7%	0.01	11%
			min	0.65	0.72	0.71	0.81	0.05	7%	0.12	18%	0.11	18%	0.21	33%
	Whangaehu	0.60	med	0.73	0.79	0.77	0.86	0.13	17%	0.19	26%	0.17	23%	0.26	35%
			max	0.79	0.86	0.87	0.95	0.19	24%	0.26	34%	0.27	35%	0.35	44%
			min	1.80	2.03	1.99	2.27	-0.25	-14%	-0.03	-1%	-0.06	-3%	0.22	12%
	Whanganui	2.05	med	1.95	2.15	2.09	2.31	-0.10	-5%	0.09	5%	0.04	2%	0.25	13%
			max	2.16	2.35	2.40	2.60	0.10	5%	0.30	14%	0.34	16%	0.55	25%

^a The selected RCMs do not consistently equate to the equivalent min/median/max values for Waiopehu due to relative differences in total erosion between RCMs at catchment/FMU versus regional scales. For consistency, we present sediment load results for the selected RCMs across all sub-catchments, which allows comparison between sub-catchments for the same RCM.

Table 15. Total erosion loads at late century represented by minimum, median, and maximum results for each RCP, summarised by FMU for PS2

DCO	FAALL	Baseline load	C1-1'-1'	Т	otal erosi	on (Mt yr	¹)	Differen	ce from lat	te-century	baseline lo	oad withou	ıt climate	change (M	t yr ⁻¹ , %)
PS2	FMU	(Mt yr ⁻¹) 2090	Statistics	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RC	P2.6	RCI	P4.5	RCF	P6.0	RCI	P8.5
			min	0.05	0.05	0.06	0.07	-0.02	-33%	-0.01	-20%	0.00	-7%	0.01	20%
	Kai Iwi	0.06	med	0.05	0.06	0.06	0.08	-0.01	-20%	0.00	-8%	0.00	8%	0.02	34%
			max	0.06	0.06	0.07	0.08	-0.01	-9%	0.00	7%	0.01	22%	0.02	42%
			min	1.05	1.18	1.35	1.64	0.03	3%	0.16	16%	0.34	32%	0.63	60%
	Manawatū	1.02	med	1.17	1.35	1.55	1.86	0.16	13%	0.33	28%	0.53	45%	0.84	72%
			max	1.31	1.56	1.77	2.02	0.30	23%	0.54	41%	0.76	58%	1.00	76%
			min	0.15	0.16	0.19	0.22	-0.01	-4%	0.01	6%	0.03	23%	0.07	49%
	Puketoi ki Tai	0.15	med	0.16	0.18	0.20	0.25	0.00	2%	0.03	19%	0.05	34%	0.10	62%
			max	0.18	0.21	0.23	0.27	0.02	14%	0.06	31%	0.08	43%	0.12	66%
Late century	D '/-I - '		min	0.62	0.71	0.82	0.99	-0.02	-3%	0.06	10%	0.17	28%	0.35	55%
cer	Rangitīkei- Turakina	0.64	med	0.70	0.82	0.92	1.12	0.05	8%	0.17	25%	0.27	39%	0.47	68%
Late			max	0.78	0.92	1.03	1.22	0.14	17%	0.27	35%	0.38	49%	0.57	73%
			min	0.04	0.04	0.04	0.05	0.00	-7%	0.00	-10%	0.00	-2%	0.00	10%
	Waiopehu	0.04	med	0.04	0.05	0.05	0.05	0.00	-5%	0.00	2%	0.00	10%	0.01	12%
			max	0.05	0.05	0.06	0.05	0.00	6%	0.01	15%	0.01	26%	0.01	15%
			min	0.26	0.29	0.33	0.41	-0.03	-10%	0.01	2%	0.05	18%	0.12	47%
	Whangaehu	0.29	med	0.29	0.34	0.38	0.46	0.01	3%	0.05	18%	0.10	33%	0.18	60%
			max	0.33	0.39	0.44	0.51	0.05	14%	0.11	32%	0.16	47%	0.22	67%
			min	0.92	1.02	1.16	1.40	-0.44	-48%	-0.33	-36%	-0.19	-21%	0.05	5%
	Whanganui	1.36	med	0.98	1.15	1.23	1.51	-0.38	-38%	-0.21	-21%	-0.12	-12%	0.15	16%
			max	1.11	1.24	1.44	1.62	-0.24	-22%	-0.11	-10%	0.08	7%	0.26	23%

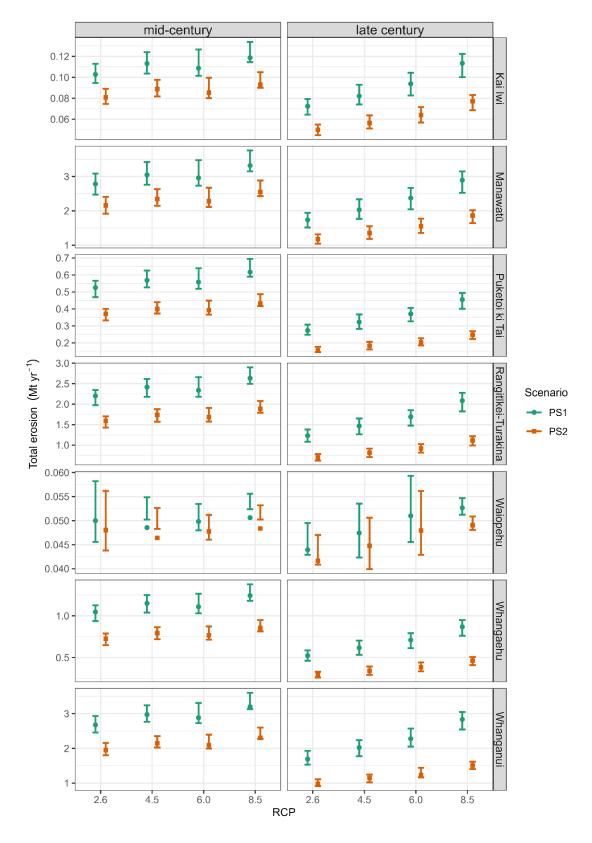


Figure 19. Total erosion loads for each FMU at mid- and late century, represented by minimum, median, and maximum results for each RCP scenario.

Note: The selected RCMs do not consistently equate to the equivalent min/median/max values for Waiopehu due to relative differences in total erosion between RCMs at catchment/FMU versus regional scales. For consistency, we present sediment load results for the selected RCMs across all sub-catchments, which allows comparison between sub-catchments for the same RCM.

5.3.2 Reductions in suspended sediment load required to meet NPS-FM visual clarity attribute bands under climate change

Suspended sediment load reductions required to achieve NPS-FM attribute bands under projected climate change were modelled in terms of proportional and absolute load reductions for each REC2 segment. These are summarised by the length (in km) and proportion by length of REC2 segments achieving each attribute band in Tables 16 and 17. REC2 segment summaries according to stream order are provided in Appendix G. Proportional reductions for A band, B band, and NBL are shown in Figures 20–22 for each scenario.

Where the baseline visual clarity already achieves A band, B band or NBL, the required reductions for those bands under modelled climate change represent the reductions required to maintain the baseline visual clarity state. This reflects the NPS-FM 2020 policy, which requires attribute targets to be set at or above the baseline state and therefore does not allow for deterioration below baseline visual clarity (Ministry for the Environment 2022a).

For PS1 at mid-century across all RCPs, the proportion of REC2 segments achieving the target ranged from 26% to 38% for A band, 29% to 44% for B band, and 30% to 49% for NBL. At late century these proportions increased to 39% to 69% for A band, 44% to 77% for B band, and 47% to 83% for NBL.

For PS2 at mid-century across all RCPs the proportion of REC2 segments achieving the target ranged from 34% to 58% for A band, 40% to 70% for B band, and 43% to 78% for NBL. At late century these proportions increased to 62% to 77% for A band, 67% to 82% for B band, and 69% to 85% for NBL.

The impact of climate change on sediment loads can be seen spatially in Figures 20–22, where a larger extent of catchments do not meet the target, especially for higher emission scenarios (RCP 8.5) and bands A and B. Pastoral hill country areas are particularly affected by the increase in loads under projected climate change. There is also a pattern of larger proportional load reductions required in lowland coastal REC2 segments, especially for RCP8.5 at late century.

Erosion mitigations implemented in both PS1 and PS2 scenarios increase the proportion of REC2 segments meeting the attribute bands at late century compared to mid-century. However, the proportion decreases when considering the impacts of climate change on sediment loads (Table 18). PS2 generally achieves a higher proportion of REC2 segments meeting the targets compared to PS1 at both mid- and late century.

For comparison, the proportion of REC2 segments achieving bands A, B, and NBL without the effects of climate change were 46%, 67%, and 81% at mid-century (2040) and 68%, 82%, and 88%, respectively, at late century (2090) for PS1. For PS2, the equivalent proportions of segments were 61%, 78%, and 86% at mid-century (2040) and 74%, 85%, and 90% at late century (2090), respectively (Table 18).

Table 16. Length and proportion of REC2 segments achieving each visual clarity attribute band and NBL (or maintaining baseline visual clarity) by midand late century under projected climate change for PS1, represented by minimum, median, and maximum results for each RCP

	PS1		Leng	th and proport	tion of REC2 segn	nents achieving	y visual clarity at	ribute bands a	nd NBL for each	RCP
Daniad	Assertle est e le const	Ctatiatia	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Attribute band	Statistic	km	%	km	%	km	%	km	%
		min	13,903	38%	10,796	29%	10,982	30%	10,419	28%
	A band	med	11,634	32%	12,022	33%	11,341	31%	10,913	30%
		max	9,505	26%	10,716	29%	10,847	30%	9,887	27%
		min	16,283	44%	12,272	33%	12,579	34%	11,715	32%
Mid- century	B band	med	13,283	36%	13,696	37%	12,880	35%	12,278	33%
cerreary		max	10,576	29%	11,859	32%	12,001	33%	10,838	30%
		min	17,869	49%	13,160	36%	13,459	37%	12,469	34%
	NBL	med	14,056	38%	14,405	39%	13,612	37%	12,853	35%
		max	11,050	30%	12,369	34%	12,593	34%	11,307	31%
		min	25,255	69%	23,418	64%	19,024	52%	15,408	42%
	A band	med	22,958	63%	19,183	52%	17,870	49%	15,070	41%
		max	20,308	55%	18,381	50%	14,483	39%	14,416	39%
		min	28,325	77%	27,030	74%	22,270	61%	17,984	49%
Late century	B band	med	26,348	72%	22,253	61%	20,522	56%	17,247	47%
20		max	23,338	64%	21,329	58%	16,662	45%	16,040	44%
		min	30,366	83%	28,880	79%	24,466	67%	20,067	55%
	NBL	med	28,244	77%	24,180	66%	22,543	61%	18,739	51%
		max	25,059	68%	23,200	63%	18,253	50%	17,133	47%

Table 17. Length and proportion of REC2 segments achieving each visual clarity attribute band and NBL (or maintaining baseline visual clarity) by midand late century under projected climate change for PS2, represented by minimum, median, and maximum results for each RCP

	PS2		Leng	th and proport	tion of REC2 segn	nents achieving	y visual clarity at	ribute bands a	nd NBL for each	RCP
Destad	Assertanta band	Ctatiatia	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Attribute band	Statistic	km	%	km	%	km	%	km	%
		min	21,404	58%	17,676	48%	17,855	49%	15,597	42%
	A band	med	18,468	50%	17,792	48%	17,531	48%	15,486	42%
		max	15,592	42%	15,102	41%	14,871	40%	12,535	34%
		min	25,814	70%	21,642	59%	22,041	60%	18,829	51%
Mid- century	B band	med	22,500	61%	21,491	59%	21,229	58%	18,482	50%
cerreary		max	18,953	52%	17,952	49%	17,543	48%	14,510	40%
		min	28,486	78%	24,541	67%	24,862	68%	21,543	59%
	NBL	med	25,213	69%	24,185	66%	24,004	65%	20,705	56%
		max	21,528	59%	20,020	55%	19,563	53%	15,614	43%
		min	28,053	76%	28,321	77%	25,549	70%	23,729	65%
	A band	med	27,256	74%	25,532	70%	25,524	70%	23,914	65%
		max	26,001	71%	25,581	70%	22,703	62%	23,551	64%
		min	29,812	81%	30,225	82%	27,375	75%	25,823	70%
Late century	B band	med	29,018	79%	27,110	74%	27,355	74%	26,060	71%
22		max	27,469	75%	27,564	75%	24,424	67%	25,461	69%
		min	30,905	84%	31,277	85%	28,553	78%	27,140	74%
	NBL	med	29,937	82%	28,057	76%	28,436	77%	27,378	75%
		max	28,294	77%	28,451	77%	25,352	69%	26,754	73%

Table 18. Summary comparing the ranges of REC2 segments achieving A band, B band, and NBL (or maintaining baseline visual clarity) across mid-(2040) and late (2090) century with and without climate change impacts

Scenario	Period	Attribute band	% of REC2 segments by leng attribute ban	
			Without climate change	With climate change
	Mid-	A band	46%	26–38%
	century	B band	67%	29–44%
PS1 —	(2040)	NBL	81%	30–49%
	Late	A band	68%	39–69%
	century	B band	82%	44–77%
	(2090)	NBL	88%	47–83%
	Mid-	A band	61%	34–58%
	century	B band	78%	40–70%
DC3	(2040)	NBL	86%	43–78%
PS2 -	Late	A band	74%	62–77%
	century	B band	85%	67–82%
	(2090)	NBL	90%	69–85%

Note: The range of values for 'with climate change' includes the min, med, and max across all RCPs. A summary of the ranges for each FMU is provided in Appendix I.

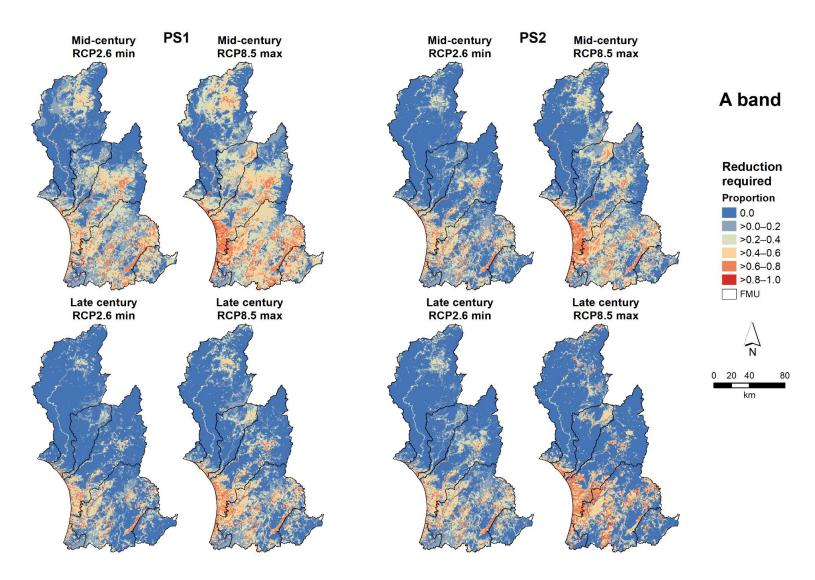


Figure 20. Proportional reduction required to meet NPS-FM attribute Band A (or maintain baseline visual clarity) for sediment load at mid- and late century, represented by RCP2.6 min and RCP8.5 max for PS1 and PS2.

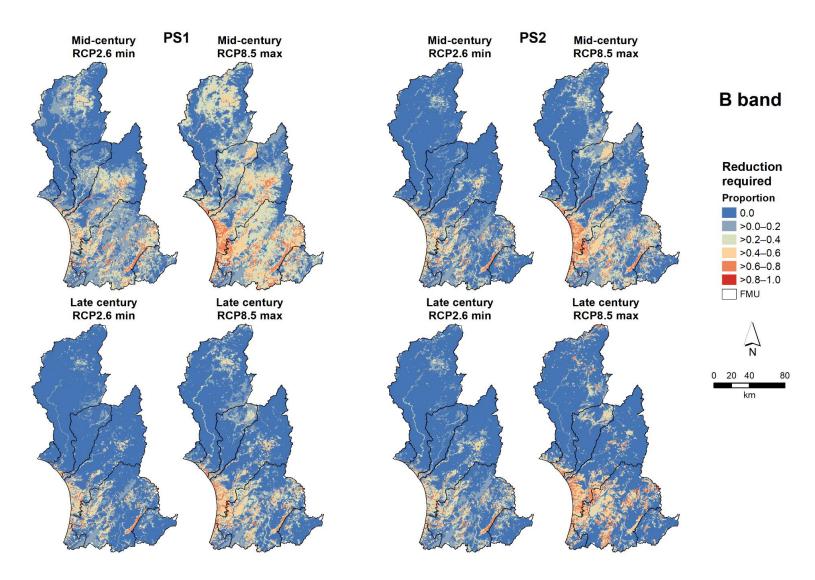


Figure 21. Proportional reduction required to meet NPS-FM attribute Band B (or maintain baseline visual clarity) for sediment load at mid- and late century, represented by RCP2.6 minimum and RCP8.5 maximum for PS1 and PS2.

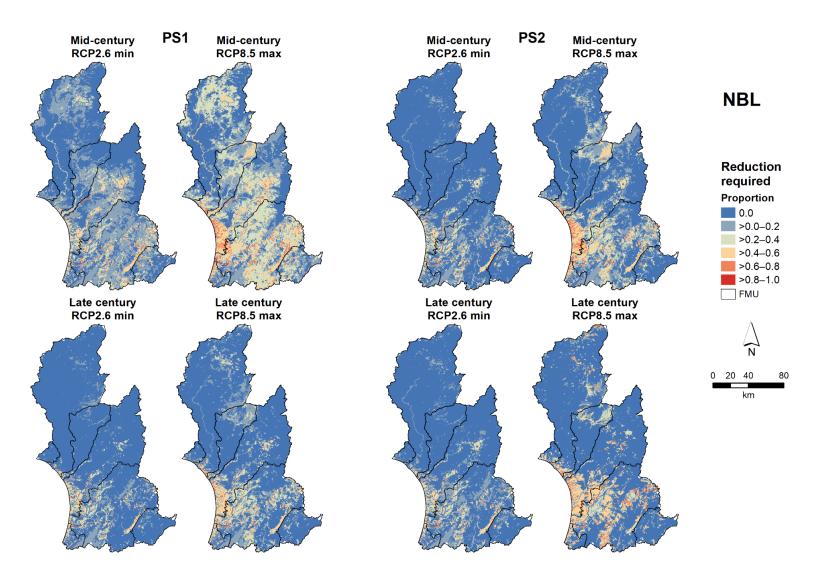


Figure 22. Proportional reduction required to meet NPS-FM NBL (or maintain baseline visual clarity) for sediment load at mid- and late century, represented by RCP2.6 minimum and RCP8.5 maximum for PS1 and PS2.

5.4 Comparison of PS1 and PS2 with scenarios from Vale et al. 2022

Here we summarise similarities and differences between model results for the two policy scenarios in the present report and the previous scenarios described in Vale et al. 2022.

From the previous modelling, SC1 represented the current state of SLUI/WCS erosion mitigation implementation and maturity to date across the region, with an accompanying future scenario representing the maturation of existing works on farms with existing plans, while no further farm plans or works were completed. SC2 represented a future state comprising SLUI/WCS erosion mitigation implementation and maturity to date, plus the future projected mapping rate of new farm plans, and the projected rate of on-farm erosion mitigation implementation and maturation of works across the region. A full description of the scenarios from Vale et al. 2022 is provided in Appendix D.

The total erosion modelled for the 2021 baseline decreased from 8.99 to 8.80 million tonnes per year (Mt yr⁻¹) when comparing the SC1/SC2 scenarios in the previous report to the PS1/PS2 scenarios in the present report. This reduction is related to the inclusion of spatial information on lowland riparian fencing based on data from HRC's Freshwater Team and the SRDM. Like SC2, both PS1 and PS2 show a significant reduction in total erosion by 2100 compared to the scenario with no additional measures (represented by SC1). By 2100, PS1 achieves a slightly larger reduction in total erosion compared to SC2 (48% vs. 47%). However, PS2 is more effective, with a 60% reduction in erosion by 2100, which is mostly achieved (56%) by 2060 (Table 19).

Table 19. Summary of total erosion load and difference from 2021 baseline compared to scenarios from Vale et al. 2022

Scenario			Total e	rosion (N	∕lt yr ⁻¹)		Di	fference base		21
		2021	2040	2060	2080	2100	2040	2060	2080	2100
Vale & Smith 2023	PS1	8.80	7.84	6.87	5.74	4.60	-11%	-22%	-35%	-48%
– present report	PS2	8.80	6.06	3.87	3.57	3.55	-31%	-56%	-59%	-60%
Vale et al. 2022 –	SC1	8.99	8.79	8.79	8.79	8.79	-1%	-2%	-2%	-2%
previous report	SC2	8.99	8.19	7.18	6.02	4.85	-9%	-21%	-34%	-47%

^a Difference from the 2021 baseline is in respect to the 2021 baseline from each report.

For SC1, the projected change in total erosion across all RCPs varied from 8% to 60% for mid-century (2040) and from 2% to 119% for late century (2090) when compared to erosion modelled without the impacts of climate change. In the case of SC2, the range was from 7% to 58% for mid-century and from -5% to +93% for late century (Table 20). In contrast, both PS1 and PS2 showed smaller increases in total erosion for mid- and late century when compared to erosion modelled without climate change. PS1 resulted in a change in total erosion ranging from 7% to 46% for mid-century and from -4% to +79% for late century (Table 20). PS2 showed a change in total erosion ranging from 3% to 41% for mid-century and from -16% to +58% for late century (Table 20).

Table 20. Summary of total erosion by mid- and late century under projected climate change compared to scenarios from Vale et al. 2022

Scenario		Period	Baseline load (Mt yr ⁻¹) 2040 or 2090	Total erosion (Mt yr ⁻¹)	Difference from mid- and late century baseline loads without climate change (%)
	PS1	Mid-century	7.84	8.4–12.5	7–46%
Vale & Smith 2023	P31	Late century	5.16	4.9–10.1	-4–79%
– present report	PS2	Mid-century	6.06	6.2-9.2	3–41%
	P32	Late century	3.56	3.1–5.8	-16–58%
	SC1	Mid-century	8.79	9.5–14.1	8–60%
Vale et al. 2022 –	3C1	Late century	8.79	9.0 19.2	2–119%
previous report	SC2	Mid-century	8.19	8.7-13.0	7–58%
	SC2	Late century	5.43	5.2-10.5	-5– 93%

The proportion of segments achieving attribute bands decreased with the impacts of climate change compared to without the impacts of climate change on sediment loads for all scenarios (Table 21). SC2 was estimated to partially offset the impacts of climate change, increasing the proportion of REC2 segments that achieve attribute bands and NBL relative to SC1 (Table 21). The proportion of REC2 segments achieving attribute bands was further increased for PS1 and PS2 relative to SC2 at both mid- and late century. For comparison, the proportion of segments achieving NBL ranged from 30% to 49% and 47% to 83% by mid and late century for PS1, and 43–78% and 69–85% by mid- and late century for PS2, compared to 28–45% and 45–79% by mid- and late century for SC2, respectively (Table 21).

Table 21. Summary comparing the proportion of REC2 segments achieving A band, B band, and NBL (or maintaining baseline visual clarity) across mid-(2040) and late (2090) century with and without climate change impacts^a compared to scenarios from Vale et al. 2022

Scenario		Period	Attribute band	% of REC2 segments by length achieving visual clarity attribute bands and NBL:		
			Danu	Without climate change	With climate change ^a	
Vale & Smith 2023 – present report	PS1	Mid-century (2040)	A band	46%	26–38%	
			B band	67%	29–44%	
			NBL	81%	30–49%	
		Late century (2090)	A band	68%	39–69%	
			B band	82%	44–77%	
			NBL	88%	47–83%	
	PS2	Mid-century (2040)	A band	61%	34–58%	
			B band	78%	40–70%	
			NBL	86%	43–78%	
		Late century (2090)	A band	74%	62–77%	
			B band	85%	67–82%	
			NBL	90%	69–85%	
Vale et al. 2022 – previous report	SC1	Mid-century (2040)	A band	40%	23–32%	
			B band	62%	24–36%	
			NBL	76%	25–38%	
		Late century (2090)	A band	40%	21–33%	
			B band	62%	22–38%	
			NBL	76%	22–40%	
	SC2	Mid-century (2040)	A band	45%	24–36%	
			B band	66%	27–42%	
			NBL	79%	28–45%	
		Late century (2090)	A band	66%	38–66%	
			B band	80%	42-74%	
			NBL	87%	45–79%	

^a The range of values for 'with climate change' includes the min, med, and max across all RCPs.

5.5 Model evaluation and limitations

5.5.1 Model evaluation

SedNetNZ is designed to predict spatial patterns in erosion and suspended sediment load on a mean annual basis for periods spanning several decades. It is difficult to quantify model performance over such timescales other than through comparison with measurements of suspended sediment load, which has been the main form of SedNetNZ model evaluation (Basher et al. 2018). Often, longer-term suspended sediment load data are unavailable. However, in the Horizons region various rivers have been monitored and the resulting suspended sediment concentration (SSC) and discharge (Q) data have been used to estimate mean annual suspended sediment loads via SSC-Q rating curve methods (Hicks, Semadeni-Davies et al. 2019). We have used these estimates of mean annual suspended sediment load (obtained from the Appendix D of Hicks, Semadeni-Davies et al. 2019) to inform the model calibration.

Previously, Dymond et al. (2016) conducted a sensitivity analysis of the model parameters and found uncertainty of approximately $\pm 50\%$ at the 95% confidence level. The greatest uncertainty arises from the landslide probability density function, landslide sediment delivery ratio (SDR), and gully density. The bank erosion component of SedNetNZ is calibrated separately, as described in Appendix A.

The relationship between mean annual suspended sediment loads estimated from SSC-Q rating curves and the updated 2021 baseline model loads is shown in Figure 23. In general, there is good agreement between the measured loads and the calibrated model, although the level of agreement varies across different catchments. When comparing the sediment loads predicted by the updated version of SedNetNZ in the present report to previous model versions, the predictions are either similar or better in terms of accuracy when compared to the measured loads in the Horizons region (Table 22). The updated baseline loads in the present report are slightly lower than those reported in Vale et al. 2022. This difference is due to the inclusion of additional erosion mitigation measures, such as riparian fencing and planting.

The updated version of SedNetNZ has led to a decrease in the overall predicted region-wide suspended sediment load compared to previous model applications in the region. In 2014 Dymond et al. estimated the region-wide load to be 13.4 Mt y^{-1} , which decreased to 12.6 Mt y^{-1} in 2018 with the implementation of SLUI measures (Basher et al. 2020). These earlier estimates are higher compared to the 8.3 Mt y^{-1} predicted for 2021 in the present study. While some of the difference can be attributed to the implementation of additional erosion mitigation measures between 2018 and 2021, most of the decrease is due to updates made to the SedNetNZ model since the previous applications in the region.

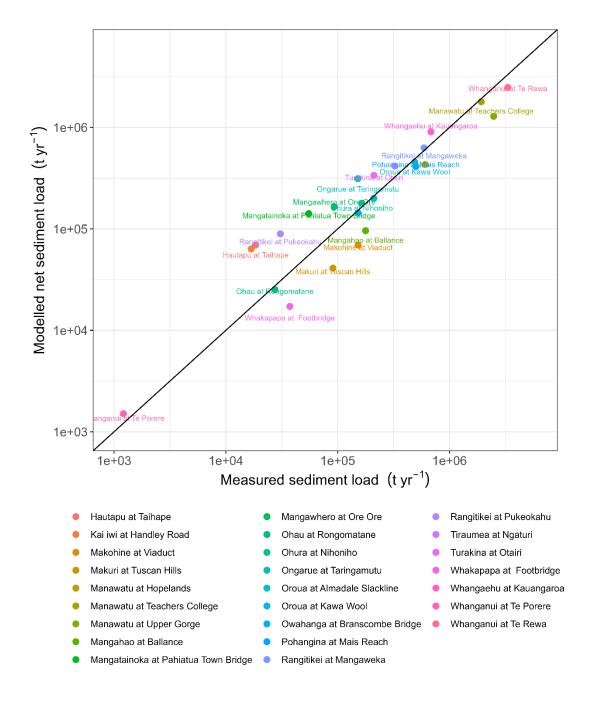


Figure 23. Mean annual suspended sediment loads estimated using SSC-Q rating curves versus modelled mean annual loads for updated 2021 baseline in this report for river gauging stations in the Horizons region.

Table 22. Percentage differences between modelled and measured suspended sediment loads summarised by Basher et al (2018) with reference to previous applications of SedNetNZ in the Horizons region

River gauging station	Dymond et al. 2013 %	Dymond et al. 2014 %	Vale et al. 2022 – previous report %	Vale & Smith 2023 – present report %
Manawatū at Hopelands	-17	-21	-25	-29
Manawatū at Teachers College	12	3	-2	-7
Mangahao at Ballance	-32	-27	-39	-46
Mangatainoka at PTB	143	170	179	157
Oroua at Almadale	39	72	-2	-5
Pohangina at Mais Reach	-1	-53	-16	-18
Tiraumea at Ngāturi	71	28	31	29
Makuri at Tuscan Hills		-44	-54	- 55
Ōhura at Nihoniho		-14	10	9
Owahanga at Branscombe Bridge		38	- 5	-6
Rangitīkei at Mangaweka		159	7	6
Rangitīkei at Pukeokahu		1,273	200	190
Whanganui at Te Rewa		11	-25	– 25

Note: For comparison, percentage differences between measured and modelled loads are reported for the updated version of SedNetNZ applied in the present report. The predicted sediment loads in this report are expected to be lower than previously measured and modelled sediment loads, given the progress of SLUI and non-SLUI works.

5.5.2 Model limitations

The previous report by Vale et al. (2022) highlighted specific limitations in each modelling component, including the representation of erosion processes, climate change projections, the estimation of reductions required to meet visual clarity attribute bands, and reductions in sediment load due to SLUI. These limitations should be considered when interpreting the model outputs. In the present report we summarise the limitations associated with the new scenarios and additional components. For further details, see Appendix E.

Lowland mitigation works

The inclusion of riparian fencing as a lowland mitigation measure required modifications to the modelling approach, which introduces uncertainty due to new data inputs.

The riparian fencing and planting data only represent a partial picture of the existing fencing and planting in the region because they capture only new initiatives connected to funding grants. This means they do not account for existing fencing across the region.

To estimate the extent of current fencing in the region, estimates from the SRDM were used. However, this introduces additional uncertainties and biases commonly found in

survey data. The SRDM fencing estimates may suffer from non-response and self-selection bias, as some districts had low participation rates. There may also be measurement or recall bias, as the definitions of 'free-flowing streams' and 'minor waterways/drains' are subjective and not clearly defined. Respondents might not accurately recall fencing extents, and there could be a bias towards presenting more favourable information.

Applying SRDM fencing estimates to the REC2 stream network also adds uncertainty because the definitions used in the SRDM do not directly align with available river classifications. A combination of factors such as channel width, stream order, slope, land cover, land use, and district were used to determine the most appropriate application.

The main implication of estimating current riparian fencing is that it limits the length of the remaining stream network available for fencing and, consequently, the potential reduction in sediment load from additional riparian fencing. This limitation also affects the potential improvements in visual clarity and the ability to achieve NPS-FM attribute bands and the NBL.

PS2: rate of implementation and proportions of land classed as top, high, and low within each farm

PS2 represents a future new policy state, which involves the full implementation of Freshwater Farm Plans (FWFPs) and appropriate works within specified timeframes. The main difference from PS1 is that the implementation of appropriate works on top, high, and low land classifications is scheduled to be completed by 2035, 2045, and 2065, respectively, for each SLUI farm priority class.

To incorporate this into the model, an estimate of the proportion of top, high, and low land within the unmapped farms was required. This introduces some uncertainty because the estimate had to be based on the average proportions of these HEL land types found within mapped WFPs, according to each SLUI priority class, which may not accurately represent the actual distribution of land types in each unmapped farm.

This approach is also subject to the same limitations related to implementation, maturity, and effectiveness of the FWFPs, as well as the definition of 'fully implemented', as described in the previous report by Vale et al. (2022).

6 Conclusions and recommendations

- The estimated total erosion for the Horizons region in 2021 is 8.8 Mt yr $^{-1}$, with the majority occurring in the Whanganui, Manawatū, and Rangitīkei-Turakina FMUs. The predicted region-wide net suspended sediment load delivered to the coast in 2021 is 8.3 Mt yr $^{-1}$.
- Under scenarios PS1 and PS2, which represent future policy implementations, there are significant reductions (48% and 60%, respectively) in region-wide suspended sediment loads by late century. PS2 achieves most of the estimated average reduction in load (56%) by 2060.

- In the absence of climate change impacts, it is projected that 90–91% of REC2 segments by length could achieve the NBL by 2100 under these scenarios. Although both scenarios result in similar proportions of REC2 segments meeting NPS-FM attribute bands by late century, PS2 achieves this outcome earlier.
- The sediment load reductions from PS1 and PS2 are greater than those achieved in previous scenario modelling by Vale et al. (2022), which results in a higher proportion of REC2 segments achieving NPS-FM attribute bands. Some lowland REC2 segments still require proportional reductions to achieve the NBL, although the absolute loads are generally low, and lower than in the previous modelling, which did not include non-SLUI lowland riparian fencing and planting data.
- Total erosion for scenario PS1 under projected climate change for the different RCPs ranges from 8.4 to 12.5 Mt yr⁻¹ for mid-century, and from 4.9 to 10.1 Mt yr⁻¹ for late century. This represents a change of 7–46% and –4% to +79% compared to loads without the effect of climate change.
- The total erosion for scenario PS2 under different RCPs ranges from 6.2 to 9.2 Mt yr⁻¹ for mid-century and from 3.1 to 5.8 Mt yr⁻¹ for late century. This represents a change of 3–41% for mid-century and –16% to +58% for late century. Only the minimum and median RCP2.6 projections at late century result in a decrease in sediment load.
- The proportion of REC2 segments achieving the NBL under future climate change varies across RCPs, with 30–49% for mid-century and 47–83% for late century under PS1, and 43–78% for mid-century and 69–85% for late century under PS2.
- The projected climate change impact decreased the proportion of REC2 segments meeting the NBL for suspended fine sediment. However, PS1 and PS2 partially offset the climate change effects, resulting in a higher proportion of REC2 segments meeting the NBL compared to the previous scenario (SC1) from Vale et al. 2022, which modelled future climate impacts without further implementation of erosion mitigation works.
- Continued investment in erosion mitigations is necessary to limit the potential impacts of climate change on suspended sediment loads by late century.
- Improvements in model predictions could be made by incorporating region-specific data on erosion control effectiveness, and information on the implementation and maturity of works at the farm scale.
- Further clarification of what constitutes a 'fully implemented' WFP would enhance estimates of the implementation rate for SLUI works on farms.

7 Acknowledgements

We thank Horizons Region Council for funding this work. We acknowledge staff from Horizons Regional Council, particularly Maree Patterson, Malcom Todd, Nicolaas Portegys, and Willie McKay, for discussions that defined the scope of work, and Willie McKay for providing spatial data. We thank Andrew Neverman for reviewing the report.

8 References

- Abernethy B, Rutherfurd ID 2000. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surface Processes and Landforms 25(9): 921–937.
- Alber A, Piégay H 2017. Characterizing and modelling river channel migration rates at a regional scale: case study of south-east France. Journal of Environmental Management 202: 479–493.
- Arulanandan K, Gillogley E, Tully R 1980. Development of a quantitative method to predict critical shear stress and rate of erosion of natural undisturbed cohesive soils. USACE, Waterways Experiment Station Technical Report GL-80-5. Vicksburg, MS, USACE.
- Basher L, Spiekermann R, Dymond J, Herzig A, Ausseil A-G 2018. SedNetNZ, SLUI and contaminant generation. Part1: Sediment and water clarity. Manaaki Whenua Landcare Research contract report LC3135, prepared for Horizons Regional Council.
- Basher L, Spiekermann R, Dymond J, Herzig A, Hayman E, Ausseil A-G 2020. Modelling the effect of land management interventions and climate change on sediment loads in the Manawatū–Whanganui region. New Zealand Journal of Marine and Freshwater Research 54(3): 490–511.
- Basher LR 2013. Erosion processes and their control in New Zealand. Ecosystem services in New Zealand conditions and trends 2013. Manaaki Whenua Press, pp. 363–374.
- Betts H, Basher L, Dymond J, Herzig A, Marden M, Phillips C 2017. Development of a landslide component for a sediment budget model. Environmental Modelling & Software 92: 28–39.
- Booker D, Hicks M 2013. Estimating wetted width and fish habitat areas across New Zealand's rivers: wetted widths estimation. NIWA client report: CHC2013-075. Prepared for Department of Conservation.
- Brune GM 1953. Trap efficiency of reservoirs. Eos, Transactions American Geophysical Union 34(3): 407–418.
- Collins D, Montgomery K, C. Z 2018. Hydrological projections for New Zealand rivers under climate change NIWA Contract Report No. 2018193CH prepared for the Ministry for the Environment.
- Crosato A 2009. Physical explanations of variations in river meander migration rates from model comparison. Earth Surface Processes and Landforms 34(15): 2078–2086.
- Crozier MJ 2010. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124(3): 260–267.
- Dairy Environment Leadership Group 2013. Sustainable Dairying: Water Accord: a commitment to New Zealand by the dairy sector. http://www.dairynz.co.nz/what-we-do/dairyindustry-strategy/
- De Rose RC 2013. Slope control on the frequency distribution of shallow landslides and associated soil properties, North Island, New Zealand. Earth Surface Processes and Landforms 38(4): 356–371.

- De Rose RC, Basher LR 2011. Strategy for the development of a New Zealand SedNet. Landcare Research Contract Report LC226 for AgResearch and Ministry of Science and Innovation.
- De Rose RC, Prosser IP, Weisse M, Hughes AO 2003. Patterns of erosion and sediment and nutrient transport in the Murray-Darling Basin. CSIRO Land and Water Technical Report 32/03.
- Desmet P, Govers G 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51(5): 427–433.
- Dunn IS 1959. Tractive resistance of cohesive channels. Journal of the Soil Mechanics and Foundations Division 85(3): 1–24.
- Dymond J, Herzig A, Ausseil A-G 2014. Using SedNetNZ to assess the impact of the Sustainable Land Use Initiative in the Manawatu-Wanganui region on river sediment loads. Landcare Research Contract Report No. 2014/EXT/1367 prepared for Horizons Regional Council.
- Dymond J, Herzig A, Basher L, Betts HD, Marden M, Phillips CJ, Ausseil A-GE, Palmer DJ, Clark M, Roygard J 2016. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works. Geomorphology 257: 85–93.
- Dymond J, Herzig A, Betts H, Marden M, Phillips C, Basher L 2013. Application of SedNetNZ for the assessment of critical source areas in the Manawatu catchment. Landcare Research Contract Report LC1697 for AgResearch and MBIE.
- Dymond JR, Ausseil A-G, Shepherd JD, Buettner L 2006. Validation of a region-wide model of landslide susceptibility in the Manawatu–Wanganui region of New Zealand. Geomorphology 74(1–4): 70–79.
- Dymond JR, Betts HD, Schierlitz CS 2010. An erosion model for evaluating regional landuse scenarios. Journal of Environmental Modelling Software 25(3): 289–298.
- Dymond JR, Davies-Colley RJ, Hughes AO and Matthaei CD 2017. Predicting improved optical water quality in rivers resulting from soil conservation actions on land. Science of the Total Environment, 603, pp.584-592.
- Dymond JR, Jessen MR, Lovell LR 1999. Computer simulation of shallow landsliding in New Zealand hill country. International Journal of Applied Earth Observation and Geoinformation 1(2): 122–131.
- Dymond JR, Shepherd JD 2004. The spatial distribution of indigenous forest and its composition in the Wellington region, New Zealand, from ETM+ satellite imagery. Remote Sensing of Environment 90: 116–125.
- Elliott AH, Semadeni-Davies AF, Shankar U, Zeldis JR, Wheeler DM, Plew DR, Rys GJ, Harris SR 2016. A national-scale GIS-based system for modelling impacts of land use on water quality. Environmental Modelling & Software 86: 131–144.
- Eyles GO 1983. The distribution and severity of present soil erosion in New Zealand. New Zealand Geographer 39(1): 12–28.
- Foster GR, Meyer LD, Onstad CA 1977. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Transactions of the ASAE 20(4): 683–687.

- Fryirs KA, Wheaton JM, Brierley GJ 2016. An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms 41(5): 701–710.
- Fuller IC 2008. Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand. Geomorphology 98(1–2): 84–95.
- Fuller IC, Heerdegen RG 2005. The February 2004 floods in the Manawatu, New Zealand: hydrological significance and impact on channel morphology. Journal of Hydrology New Zealand 44(2): 75–90.
- Fuller IC, Riedler RA, Glade T, Bell R, Marden M 2016. Landslide-driven erosion and slope-channel coupling in steep, forested terrain, Ruahine Ranges, New Zealand, 1946–2011. Catena 142: 252–268.
- Gill MA 1979. Sedimentation and useful life of reservoirs. Journal of Hydrology 44(1): 89–95.
- Guy GG 1977. Landslide investigations, Main North Line Railway, South Island, New Zealand. Unpublished thesis, University of Canterbury. http://ir.canterbury.ac.nz/handle/10092/8095.
- Hall JE, Holzer DM, Beechie TJ 2007. Predicting river floodplain and lateral channel migration for salmon habitat conservation 1. Journal of the American Water Resources Association 43(3): 786–797.
- Hancox GT 2004. Immediate report on landsliding caused by the 15-20 February 2004 floods in the lower North Island, New Zealand. GNS Immediate Report LD3 & 5 / 942.
- Hancox GT, Wright K 2005. Analysis of landsliding caused by the 15–17 February 2004 rainstorm in the Wanganui-Manawatu hill country, southern North Island, New Zealand. Institute of Geological & Nuclear Sciences.
- Hanson GJ, Simon A 2001. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrological Processes 15(1): 23–38.
- Hawley JG, Dymond JR 1988. How much do trees reduce landsliding? Journal of Soil and Water Conservation 43(6): 495.
- Henderson, R, Diettrich, J. 2007. Statistical analysis of river flow data in the Horizons Region. Prepared for Horizons Manawatu Regional Council. NIWA Client Report: CHC2006-154.
- Hickin EJ, Nanson GC 1984. Lateral migration rates of river bends. Journal of Hydraulic Engineering 110(11): 1557–1567.
- Hicks DM, Haddadchi A, Whitehead A, Shankar U 2019. Sediment load reductions to meet suspended and deposited sediment thresholds. NIWA Client Report 2019100CH prepared for Ministry for the Environment.
- Hicks DM, Semadeni-Davies A, Haddadchi A, Shankar U, Plew D 2019. Updated sediment load estimator for New Zealand. NIWA Client Report No: 2018341CH.
- Hicks DM, Shankar U 2020. Sediment load reduction to meet visual clarity bottom lines. Memo prepared for Ministry for the Environment.

- Hooke JM 1979. An analysis of the processes of river bank erosion. Journal of Hydrology 42(1): 39–62.
- Horizons Regional Council 2019a. Hill country erosion and sediment management in the Manawatu Whanganui region. Report No. 19-94.
- Horizons Regional Council 2019b. Sustainable Land Use Initiative: Catchment Operations Committee report No. 19-92.
- Horizons Regional Council. Implementation of lowland mitigation works for review, Unpublished document.
- Hubble TCT, Docker BB, Rutherfurd ID 2010. The role of riparian trees in maintaining riverbank stability: a review of Australian experience and practice. Ecological Engineering 36(3): 292–304.
- IPCC 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY Cambridge University Press. 1535, doi:10.1017/CBO9781107415324. p.
- Julian JP, Torres R 2006. Hydraulic erosion of cohesive riverbanks. Geomorphology 76(1): 193–206.
- Konsoer KM, Rhoads BL, Langendoen EJ, Best JL, Ursic ME, Abad JD, Garcia MH 2016. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252: 80–97.
- Landcare Research NZ Ltd 2020. LCDB v5.0 Land Cover Database version 5.0, Mainland New Zealand. Available from LRIS portal: https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/.
- Leathwick JR, Morgan F, Wilson G, Rutledge D, McLeod M, Johnston K 2003. Land environments of New Zealand: technical guide. Auckland, David Bateman Ltd.
- Manderson A, Douglas G, Mackay A, Dymond JR 2011. SLUI Outcomes project: review of the SLUI database and development of a SLUI outcomes reporting framework.

 Report prepared for Horizons Regional Council by AgResearch.
- Manderson A, Dymond JR, Ausseil A-G 2015. Climate change impacts on water quality outcomes from the Sustainable Land Use Initiative (SLUI). Horizons Report No. 2015/EXT/1451.
- Marden M, Herzig A, Basher L 2014. Erosion process contribution to sediment yield before and after the establishment of exotic forest: Waipaoa catchment, New Zealand. Geomorphology 226: 162–174.
- Marden M, Phillips CJ, Rowan D 2008. Recurrent displacement of a forested earthflow and implications for forest management, East Coast Region, New Zealand. IAHS publication 325: 491–501.
- McCool DK, Foster GR, Mutchler CK, Meyer LD 1989. Revised slope length factor for the universal soil loss equation. Transactions of the ASAE 32(5): 1571–1576.
- McIvor I, Douglas G, Dymond JR, Eyles G, Marden M 2011. Pastoral hillslope erosion in New Zealand and the role of poplar and willow trees in its reduction. In: Soil erosion issues in agriculture. Pp. 257–278.

- http://www.intechopen.com/articles/show/title/pastoral-hill-slope-erosion-in-new-zealand-and-the-role-of-poplar-and-willow-trees-in-its-reduction.
- Ministry for the Environment 2018. Climate change projections for New Zealand: atmospheric projections based on simulations undertaken for the IPCC 5th Assessment. 2nd edn. Wellington, Ministry for the Environment.
- Ministry for the Environment 2020. National Policy Statement for Freshwater Management 2020. Wellington, Ministry for the Environment.
- Ministry for the Environment 2022a. Guidance for implementing the NPS-FM sediment requirements. Wellington, Ministry for the Environment.
- Ministry for the Environment 2022b. Stock exclusion low slope land 2022. Retrieved from https://data.mfe.govt.nz/layer/111150-stock-exclusion-low-slope-land-2022/
- Miri SA 1999. Erosion and land use in the Pohangina region: a study using GIS and remote sensing. Unpublished master's thesis, Massey University.
- Nanson GC, Hickin EJ 1983. Channel migration and incision on the Beatton River. Journal of Hydraulic Engineering 109(3): 327–337.
- Nanson GC, Hickin EJ 1986. A statistical analysis of bank erosion and channel migration in western Canada. Geological Society of America Bulletin 97(4): 497–504.
- Neverman A, Djanibekov U, Soliman T, Walsh P, Spiekermann R, Basher L 2019. Impact testing of a proposed suspended sediment attribute: identifying erosion and sediment control mitigations to meet proposed sediment attribute bottom lines and the costs and benefits of those mitigations. Manaaki Whenua Landcare Research Contract Report LC3574.
- Neverman A, Smith HG 2022. SedNetNZ modelling for freshwater planning in Otago. Landcare Research Contract Report LC5016, prepared for Otago Regional Council.
- Neverman A, Smith HG, Herzig A, Basher LR 2021a. Modelling baseline suspended sediment loads and load reductions required to achieve Draft Freshwater Objectives for Southland. Manaaki Whenua Landcare Research Contract Report LC3749, prepared for Environment Southland.
- Neverman A, Smith HG, Herzig A, Basher L 2021b. Planning soil conservation for sediment load reduction in Taranaki. Manaaki Whenua Landcare Research Contract Report LC3942 prepared for Taranaki Regional Council.
- Neverman A, Vale SS, Smith HG 2020. Real-time monitoring to detect erosion sources affecting sediment-related water quality. Soil Horizons Issue 29.
- Neverman AJ, Donovan M, Smith HG, Ausseil AG, Zammit C 2023. Climate change impacts on erosion and suspended sediment loads in New Zealand. Geomorphology 427: 108607.
- Newsome PFJ, Wilde RH, Willoughby EJ 2008. Land Resource Information System spatial data layers: data dictionary. Palmerston North, NZ, Landcare Research. http://digitallibrary.landcareresearch.co.nz/cdm/ref/collection/p20022coll14/id/67.
- NIWA 2021. CliFlo: NIWA's National Climate Database on the Web. Available from https://cliflo.niwa.co.nz/

- Page MJ, Trustrum NA, Dymond JR 1994. Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand. Geomorphology 9(3): 169–188.
- Polvi LE, Wohl E, Merritt DM 2014. Modeling the functional influence of vegetation type on streambank cohesion. Earth Surface Processes and Landforms 39(9): 1245–1258.
- Reid LM, Page MJ 2003. Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorphology 49(1–2): 71–88.
- Renard KG 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC, United States Government Printing.
- Rosewell CJ, Loch RJ 2002. Estimation of the RUSLE soil erodibility factor. In: McKenzie N, Coughlan K, Cresswell H eds Soil physical measurement and interpretation for land evaluation. Melbourne, Australia: CSIRO Publishing.
- Semadeni-Davies A, Elliott S 2016. Modelling the effect of stock exclusion on *E. coli* in rivers and streams: national application. Technical Paper No: 2017/10 prepared for Ministry for Primary Industries by NIWA.
- Sibson R 1981. A brief description of natural neighbor interpolation. In: Barnett V ed. Interpolating multivariate data. Chichester, UK, John Wiley. Pp. 21–36.
- Simon A, Collison AJC 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms 27(5): 527–546.
- Smith HG, Herzig A, Dymond JR, Basher LR 2019. Application of a revised SedNetNZ model to the Oreti and Aparima catchments, Southland. Manaaki Whenua Landcare Research contract report LC3507 prepared for Our Land & Water National Science Challenge.
- Smith HG, Spiekermann R, Betts H, Neverman AJ 2020. Application of a revised bank erosion model to update SedNetNZ results for Hawke's Bay. Manaaki Whenua Landcare Research contract report LC3740, prepared for Hawke's Bay Regional Council.
- Smith HG, Spiekermann R, Betts H, Neverman AJ 2021. Comparing methods of landslide data acquisition and susceptibility modelling: examples from New Zealand. Geomorphology 381: 107660.
- Smith HG, Spiekermann R, Dymond J, Basher L 2019. Predicting spatial patterns in riverbank erosion for catchment sediment budgets. New Zealand Journal of Marine and Freshwater Research 53(3): 338–362.
- Sood A 2014. Improved bias corrected and downscaled regional climate model data for climate impact studies: validation and assessment for New Zealand. Retrieved from www.researchgate.net/publication/265510643 Improved Bias Corrected and Downs caled Regional Climate Model Data for Climate Impact Studies Validation and As sessment.net/publication/265510643 Improved Bias Corrected and Downs caled Regional Climate Model Data for Climate Impact Studies Validation and As sessment.net/publication/265510643 Improved Bias Corrected and Downs www.sessment.net/publication/265510643 Improved Bias
- Spiekermann R, Betts H, Dymond J, Basher L 2017. Volumetric measurement of river bank erosion from sequential historical aerial photography. Geomorphology 296: 193–208.

- Thorne CR 1990. Effects of vegetation on riverbank erosion and stability. In: Thornes JB ed. Vegetation and erosion. Chichester, UK, John Wiley & Sons. Pp. 125–144.
- Trimble SW 1994. Erosional effects of cattle on streambanks in Tennessee, U.S.A. Earth Surface Processes and Landforms 19(5): 451–464.
- Vale SS 2018. Quantifying sediment sources of floodplain deposits in the lower Oroua River using sediment fingerprinting. Manaaki Whenua Landcare Research contract report LC3287, prepared for Horizons Regional Council.
- Vale SS, Smith HG, Matthews A, Boyte S 2021. Determining sediment source contributions to overbank deposits within stopbanks in the Oroua River, New Zealand, using sediment fingerprinting. Journal of Hydrology (NZ) 59(2): 147–172.
- Vale SS, Smith HG, Neverman A, Herzig A 2021. Application of SedNetNZ with land management and climate change scenarios and temporal disaggregation in the Bay of Plenty Region. Manaaki Whenua Landcare Research contract report LC4002, prepared for Bay of Plenty Regional Council.
- Vale SS, Smith HG, Neverman A, Herzig A 2022. Application of SedNetNZ with SLUI erosion mitigation and climate change scenarios in the Horizons region to support NPS-FM 2020 implementation. Manaaki Whenua Landcare Research contract report LC5033, prepared for Horizons Regional Council.
- Walker M, Rutherfurd ID 1999. An approach to predicting rates of bend migration in meandering alluvial streams. In: Rutherfurd ID, Bartley R eds. Proceedings of the Second Australian Stream Management Conference, Melbourne, Australia, Cooperative Research Centre for Catchment Hydrology. Pp. 659–665.
- Wang G, Gertner G, Liu X, Anderson A 2001. Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. Catena 46(1): 1–14.
- Whitehead AL, Booker DJ 2020. NZ river maps: an interactive online tool for mapping predicted freshwater variables across New Zealand. Christchurch, NIWA. https://shiny.niwa.co.nz/nzrivermaps/
- Wischmeier WH, Johnson C, Cross B 1971. Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation 26(5): 189–193.
- Woods R, Hendrikx J, Henderson R, Tait A 2006. Estimating mean flow of New Zealand rivers. Journal of Hydrology New Zealand 45(2): 95–109.
- Wynn T, Mostaghimi S 2006. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, usa1. Journal of the American Water Resources Association 42(1): 69–82.
- Yang X, Gray J, Chapman G, Zhu Q, Tulau M, McInnes-Clarke S 2018. Digital mapping of soil erodibility for water erosion in New South Wales, Australia. Soil Research 56(2): 158–170.
- Zhang X, Phillips C, Pearce A 1991. Surface movement in an earthflow complex, Raukumara Peninsula, New Zealand. Geomorphology 4(3): 261–272.
- Zhang X, Liu X, Zhang M, Dahlgren RA, Eitzel M 2010. A Review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. Journal of Environmental Quality 39(1): 76–84.

Appendix A - SedNetNZ model description

This section provides a description of methods used in the application of SedNetNZ in the Horizons region, as described in Vale et al. 2022 and provided here for ease of reference.

Surficial erosion

Surficial erosion processes in SedNetNZ (Dymond et al. 2016) are represented by the NZUSLE² (Dymond et al. 2010) model:

$$ES = aP^2KLSC \tag{A1}$$

where ES denotes surficial erosion in t km⁻² yr⁻¹, a is a constant (t km⁻² yr⁻¹ mm⁻²) calibrated against measurements (Dymond et al. 2010) with a value of 1.2 x 10⁻³; P is mean annual rainfall (mm); K is the soil erodibility factor (dimensionless), L is the slope length factor, S is the slope steepness factor, and C represents the impact of vegetation cover (dimensionless) (1.0 for bare ground, 0.01 for pasture, and 0.005 for forest and scrub).

We use a revised representation of surficial erosion processes as part of the SedNetNZ model, following Smith, Herzig et al. (2019), which replaces the slope length and slope steepness factors. The uniform slope length factor (L) of the NZUSLE (Dymond et al. 2010) is replaced with a factor that better represents the effect of topography on the size of convergent upslope areas contributing overland flow and surficial erosion, as described by Desmet and Govers (1996):

$$L = \frac{(A+D^2)^{m+1} - A^{m+1}}{D^{m+2} \times x^m \times 22.13^m}$$
 (A2)

where L is the slope length factor for a given raster cell (pixel), A is the upstream catchment area (m²) at the cell inlet, D is the raster cell width (m), m is the slope length exponent, $x = \sin \alpha + \cos \alpha$, with α being the slope aspect.

The slope length exponent, m, is calculated depending on the rill to inter-rill ratio, β , and the slope gradient, θ , (Foster et al. 1977; McCool et al. 1989; cited in Renard 1997):

$$\beta = \frac{\sin \theta /_{0.896}}{3 \times (\sin \theta)^{0.8} + 0.56} \tag{A2}$$

$$m = \frac{\beta}{1+\beta} \tag{A3}$$

We also apply a revised slope factor, S, which is calculated according to a threshold in slope gradient Sp (%) (Renard 1997):

$$S = \begin{cases} 10.8 \times \sin \theta + 0.03 & with sp < 9\% \\ 16.8 \times \sin \theta - 0.5 & with sp \ge 9\% \end{cases}$$
 (A4)

² New Zealand Universal Soil Loss Equation.

Furthermore, we apply a revised, spatially variable K factor in the NZUSLE developed in Neverman et al. (2021b) to better represent the spatial variability of soil erodibility, utilising the Fundamental Soil Layers (FSL) to represent soil parameters. We adapted the K factor equations in Wang et al. (2001) and Yang et al. (2018) to the NZUSLE:

$$K = \frac{2.1(12-OM)M^{1.14}10^{-4} + 3.25(SS-2) + 2.5(PP-3)}{7.59 \times 10}$$
(A5)

where OM is the soil organic matter content, M is the particle size parameter, SS is the soil structure code, and PP is the soil profile permeability code. We use six PP classes, adapted from Rosewell and Loch (2002). The soil structure code was set at SS = 2 because the FSL has insufficient data on soil structure to relate to the SS classes used for calculating K. We found the magnitude of K was not sensitive to the choice of SS class value. M is calculated as a function of the proportion of silt and clay:

$$M = Silt(100 - Clay) \tag{A6}$$

where Silt and Clay are the percentages of silt and clay in the soil, respectively.

Silt was limited to a range of 15–70%, and OM was capped at 4% to fit the nomograph of Wischmeier et al. (1971) used to derive Equation A5 for organic soils. Where there was no FSL information available to calculate a spatially varying K factor, a uniform value of 0.25 was used (Dymond et al. 2010).

Shallow landslide erosion

Shallow landslides are considered to be the most common form of erosion in New Zealand hill country (Eyles 1983). Typical landslides are seldom greater than 2 m deep, and individual failures are usually of small areal extent ($50-100 \text{ m}^2$) (Smith et al. 2021). They usually have a debris tail of deposited sediment below their source, which often reaches a stream (for approximately half of debris tails; see Dymond et al. 1999). Landslide occurrence is highly correlated with slope angle, with most failures occurring on slopes steeper than 26 degrees, but landslides can occur on slopes as low as 15 degrees (De Rose 2013; Smith et al. 2021). The expected mass of soil lost to landslide erosion per square kilometre per year, and the connection with a stream, is given by *EL*:

$$EL = \rho SDR \, d_1 f(s) \tag{A7}$$

where ρ is the bulk density of soil (t m⁻³), SDR is the sediment delivery ratio, d_l is the mean depth of landslide failure (m), and f(s) is the expected area of landslide scars per square kilometre per year at slope angle s (m² km⁻² yr⁻¹).

Landslide erosion is estimated for those Erosion Terrains³ (see Dymond et al. 2010) identified as being susceptible to landslide erosion. ρ is set to 1.5 t m⁻³ (Dymond et al.

³ An Erosion Terrain is a land type with a unique combination of erosion processes and rates, leading to characteristic sediment generation and yields. Erosion Terrains were derived from the New Zealand Land Resource Inventory data and are based on combinations of rock type/parent material, topography, rainfall, and erosion process type and severity. Erosion Terrain coefficients are listed in Dymond et al. 2010.

2016); SDR values are typically 0.5 (Dymond et al. 2016), but vary from 0.1 to 1.0 depending on the specific Erosion Terrain calibrated for the region; d_l is set to 1 m (Page et al. 1994; Reid & Page 2003); and f(s) is determined from previous calibration of SedNetNZ in the Manawatū (Dymond et al. 2016; Betts et al. 2017). Permanent forest cover is estimated to reduce shallow landslide erosion by 90% compared with pasture (Basher 2013; Dymond et al. 2016).

Earthflow erosion

Slow-moving earthflows (c. 1 m per year) are common in Erosion Terrains underlain by crushed mudstone and argillite (Dymond et al. 2010). The delivery of sediment to streams is via the undercutting of earthflow toes. The mass of soil delivered to streams by earthflows in t km $^{-2}$ a $^{-1}$ is denoted by EE and is estimated as:

$$EE = \rho \, d_e \, v \, ED \tag{A8}$$

Where ρ is the bulk density of soil (t m⁻³), d_e is the mean depth of earthflows (m), v is the mean speed of earthflows (m yr⁻¹), and ED is the mean length of stream intersecting earthflow toes in a square kilometre (m km⁻²).

 ρ is set to 1.5 t m³ (Dymond et al. 2016), d_e is set to 3 m (based on field observation; Dymond et al. 2016), and v is set to 0.1 m yr⁻¹ (average from published data; Guy 1977; Zhang et al. 1991; Marden et al. 2008, 2014). ED is set to 1,024 m km⁻² (from digitising stream lengths on scanned aerial photographs; Dymond et al. 2016).

Gully erosion

Gullies commonly initiate at channel heads, usually because of excessive surface or subsurface water flow. Once initiated, a gully can continue to expand over long time periods (decades). The mass of soil delivered to streams by gullies, in t km⁻² yr⁻¹, is denoted by EG and is estimated by:

$$EG = \frac{\rho A_g GD}{T} \tag{A9}$$

where ρ is the bulk density of soil (t m⁻³), A_g is the mean cross-sectional area of gullies (m²), GD is the length of gullies in a square kilometre (km km⁻²), and T is the time since gully initiation (in years).

Following Dymond et al. (2016), ρ is set to 1.5 t m⁻³; A_g is set to 900 m² (from field observations), GD is set to 220 m (from digitising gully lengths on scanned aerial photographs), and T is set to 120 years.

Bank erosion

SedNetNZ represents bank erosion at the reach-scale, whereby the river network is divided into stream links based on the River Environment Classification v2 (REC2). The total mass of material eroded from riverbanks each year is a function of bank height, reach length, and bank migration rate (Dymond et al. 2016):

$$B_i = \rho M_i H_i L_i \tag{A10}$$

where B_j is the total eroded mass for the jth stream link (t yr⁻¹), ρ is the bulk density of the bank material (t m⁻³), M_j is the bank migration rate (m yr⁻¹), H_j is the mean bank height (m), and L_j is the length (m) of the jth stream link. Bank height is derived from a relationship with mean annual discharge, and bulk density is estimated at 1.5 t m⁻³ (Dymond et al. 2016).

The predicted mass of material eroded from riverbanks represents the gross contribution of sediment supplied to the river channel per year. This does not account for redeposition and storage of eroded bank material on banks or within the channel bed, or the lateral accretion of material on bars with channel migration. Hence, net bank erosion in SedNetNZ is estimated as one-fifth of gross bank erosion, based on results from the Waipaoa River catchment (De Rose & Basher 2011). Overbank vertical accretion of fine sediment on floodplains beyond the active channel is represented separately (Dymond et al. 2016).

Bank migration rate (M_i) is represented as a function of six factors as follows:

$$M_{i} = SP_{i}Sn_{i}T_{i}V_{i}(1 - PR_{i})(1 - PW_{i})$$
(A11)

where M_j is the bank migration rate (m yr⁻¹) of the jth stream link, SP_j is the stream power of the mean annual flood for the jth stream link, Sn_j is the channel sinuosity rate factor of the jth link, T_j is the soil texture-based erodibility factor of the jth link, V_j is the valley confinement factor of the jth link, PR_j is the proportion of riparian woody vegetation of the jth link, and PW_j is the fraction of bank protection works for the jth link (Smith, Spiekermann et al. 2019).

Stream power (SP_j) for the mean annual flood $(MAF_j, \, m^3 \, s^{-1})$ is estimated for each stream link by the product of mean annual flood and channel slope (S_j) . MAF is estimated from a fitted power relationship $(MAF = aq^b)$ with mean annual discharge $(q, \, m^3 \, s^{-1})$ using data from long-term river flow gauging within the catchment or region of interest:

$$SP_j = MAF_jS_j = aq_j{}^bS_j (A12)$$

Various studies report increasing bank migration rates with increasing bankfull discharge and stream power (Hooke 1979; Nanson & Hickin 1986; Walker & Rutherfurd 1999; Alber & Piégay 2017). While MAF has been shown to relate to bank erosion rates (Dymond et al. 2016), other factors, such as channel sinuosity (Nanson & Hickin 1983), the cohesiveness of bank materials (Julian & Torres 2006), valley confinement (Hall et al. 2007), and riparian woody vegetation (Abernethy & Rutherfurd 2000), are also important, resulting in high levels of spatial variability in bank erosion.

We use the log-normal probability density function to represent the relationship between channel sinuosity and migration rate, which we term the sinuosity rate factor. This function allows us to represent the positive skew observed in the relationship between channel sinuosity and migration rate (Crosato 2009). The dimensionless channel sinuosity rate factor (Sn_i) is calculated as

$$Sn_{j} = \frac{1}{(Sinu_{j}-1)\sigma\sqrt{2\pi}} e^{\left(-\frac{\left(\ln\left(Sinu_{j}-1\right)-\mu\right)^{2}}{2\sigma^{2}}\right)}$$
(A13)

where $Sinu_j$ is sinuosity of the jth stream link of the REC2 network, and μ and σ are the mean and standard deviation parameters that determine the location and scale of the distribution. The μ and σ parameters are fitted using measurements of reach-scale bank migration rates.

The texture of bank material influences bank migration rates (Hickin & Nanson 1984; Julian & Torres 2006; Wynn & Mostaghimi 2006). Our approach is based on an empirical relationship between percent silt + clay content (SC) and soil critical shear stress (τ_c) derived by Julian and Torres (2006) using data from Dunn (1959) as follows:

$$\tau_c = 0.1 + 0.1779SC + 0.0028SC^2 - 0.0000234SC^3 \tag{A14}$$

SC is obtained from spatial data on soil textural classes compiled from the FSL (Newsome et al. 2008), which provide national coverage. The soil texture-based erodibility factor (T_j) is represented by a power function to characterise the relationship between τ_c and bank erodibility for the jth stream link:

$$T_i = c\tau_{c,i}^{-d} \tag{A15}$$

where the c and d parameters are fitted using available bank migration rate data. The choice of a power function is based on experimental (Arulanandan et al. 1980) and field (Hanson & Simon 2001; Julian & Torres 2006) observations of the relationship between stream bank or bed critical shear stress and erodibility.

Floodplain extent and the level of valley confinement are factors that may limit lateral bank migration (Hall et al. 2007; De Rose & Basher 2011). The presence of steep valley sides and/or exposure of bedrock influence spatial patterns of erosion and deposition (Fryirs et al. 2016). Here, we adapt the Australian SedNet model approach to estimate a valley confinement factor (V_j) by using the mean slope (SB_j) in degrees of a buffer zone either side of the jth stream link:

$$V_j = \left(1 - e^{\left(-15/_{SB_j}\right)}\right)^{11} \tag{A16}$$

Woody riparian vegetation typically increases bank stability via the effects of root reinforcement and root cohesion (Abernethy & Rutherfurd 2000; Hubble et al. 2010; Polvi et al. 2014; Konsoer et al. 2016). Woody vegetation can also increase roughness and flow resistance, thereby reducing the boundary shear stress acting on the bank surface (Thorne 1990). In addition, woody vegetation has hydrological effects on bank stability. For example, woody vegetation was found to be more effective than grass cover at lowering soil water content due to increased canopy interception and evapotranspiration, thus improving bank stability (Simon & Collison 2002).

We represent the effect of riparian woody vegetation (PR_j) in reducing bank migration rates at the reach scale. Bank migration rates are reduced proportionally to the extent of

woody riparian vegetation along the j^{th} stream link (equation A11). Stream links with complete riparian woody vegetation cover are assumed to erode at 0.05 of the migration rate with no woody cover (De Rose et al. 2003). Spatial information on woody vegetation is obtained from satellite imagery and intersected with the Land Information New Zealand (LINZ) digital stream network obtained from 1:50,000 topographic mapping. The mapped stream network was used in preference to the DEM-derived channel network because it tends to exhibit better planform accuracy, which should improve spatial correspondence between channel position and riparian woody vegetation.

In some cases the LINZ stream network provides poor representation of channel width for wider reaches with exposed gravel. To address this issue, the spatial union of the LINZ river polygons with LCDB v5 'river' and 'gravel and rock' land-cover classes was used to produce revised river polygons. Mapped gravel and rock areas located beyond the extent of the channel network were removed. The revised stream network layer improved alignment between channel banks and mapped woody vegetation when quantifying the reach-scale extent of riparian woody vegetation cover. The proportion of riparian woody vegetation is computed from the intersection of the revised stream network with a 15 m buffer and a classified map of 2002 woody vegetation cover (called EcoSat Woody) derived from Landsat TM at 15 m resolution (Dymond & Shepherd 2004).

We also include representation of channel protection works (PW_j) that are designed to reduce bank erosion (e.g. rock riprap, willow edge protection), as well as stopbanks employed for flood protection, where such data are available. We assume that over the multi-decadal model timescale, erosion mitigation would ultimately be targeted to where migrating riverbanks approach stopbanks, or that such interventions have already been implemented to protect stopbank integrity. The proportional length of bank erosion mitigation measures (PEC_j) and stopbanks (PSB_j) is summed to give the proportion of channel works (PW_j) for the jth stream link. PEC_j is computed as the length of erosion mitigation measures within a stream link relative to the total length of that link. This assumes erosion mitigation measures are targeted to the eroding bank side. Stopbanks may be located on either side of the channel irrespective of the direction of bank migration. Therefore, PSB_j is computed as the length of stopbanks in a link relative to $2 \times link$ length.

Inputs to the bank erosion model component of SedNetNZ were obtained from national-scale spatial datasets comprising the REC2 and LINZ stream networks, 15 m DEM, FSL for soil data, and EcoSat Woody for 2002 woody vegetation cover. LCDB v5 (Landcare Research NZ Ltd 2020) was not used, despite being more recent, because it has a minimum mapping unit of 10,000 m² versus 225 m² for EcoSat. This makes LCDB less suitable for characterising narrow corridors of woody vegetation often found along channel banks.

Mean annual discharge estimated for each link in the REC2 stream network is based on an empirical water balance model (Woods et al. 2006) used in the CLUES water quality model (Elliott et al. 2016). Mean annual flood statistics for 47 gauging stations with records > 10 years were obtained from an analysis of river flow data for the Horizons region (Henderson & Diettrich 2007). These data were used to fit regional relationships between mean annual discharge and mean annual flood for use in calculating stream power for

each REC2 link in the stream network. MAF was best predicted by partitioning the gauging site data into three spatially discrete areas comprising: a) Manawatū and adjacent coastal catchments ($MAF = 40q^{0.81}$, $R^2 = 0.97$, n = 21); b) Rangitīkei ($MAF = 34q^{0.66}$, $R^2 = 0.95$, n = 9); and c) Whanganui, Kai Iwi, Whangaehu, and Turakina catchments ($MAF = 26q^{0.79}$, $R^2 = 0.97$, n = 17). These discrete q/MAF relationships produced a small improvement over a single, region-wide relationship ($R^2 = 0.94$). HRC also provided spatial data on stopbanks and channel protection works, which have been included in the model simulations.

We used a dataset comprising available measured bank migration rates from the Manawatū and Kaipara catchments to calibrate the bank erosion model (Spiekermann et al. 2017; Smith, Spiekermann et al. 2019). Calibration of the bank migration model was performed by minimising the mean square error (MSE) between predicted and observed data by optimising parameter values for the sinuosity (μ and σ) and bank soil texture (c and d) factors in equations A13 and A15, respectively. This produced reasonable agreement between measured and observed rates of bank migration (Smith, Spiekermann et al. 2019; Figure A1).

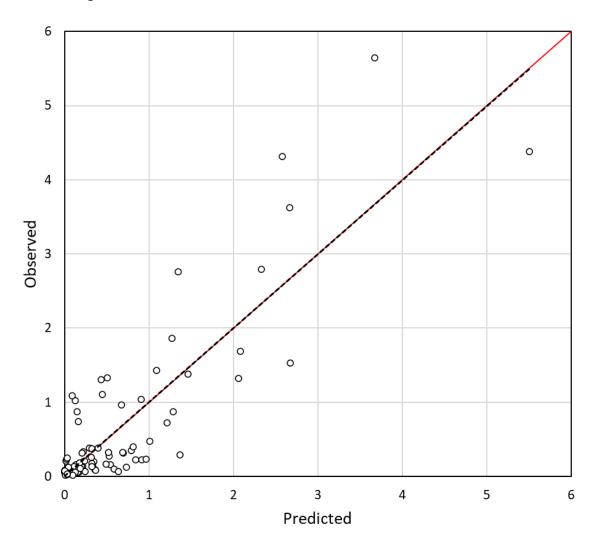


Figure A1. Plot comparing predicted versus observed bank migration rates (m yr⁻¹) based on calibrated parameter values for the sinuosity and erodibility factors. Fitted regression line (black dashed) and the 1:1 line (red) are also shown.

Sediment routing

SedNetNZ accounts for the deposition of sediment in lakes and on floodplains as the sediment is transported through the channel network.

To account for sediment trapping through lakes, we apply a revised SedNetNZ sediment routing algorithm. The revised algorithm applies a lake-specific sediment passing factor (*SPF*) to the net routed sediment load at the end of an REC2 sub-catchment draining to a lake. *SPF* was calculated using an adaptation of Gill's (1979) approximation of Brune's (1953) trap efficiency (the inverse of passing factor) curve for medium sediment:

$$SPF = 1 - \frac{V/I}{1.02(V/I) + 0.012} \tag{A17}$$

where V is the lake volume and I is the annual inflow to the lake. This is similar to the approach of Hicks, Haddadchi et al. (2019).

The mass of sediment deposited on the floodplain in a given reach is calculated as:

$$F_i = pS_t \frac{L_i acc S_i^2}{\sum L_i acc S_i^2} \tag{A18}$$

where F_i is the total floodplain deposition (t yr⁻¹) in the ith sub-catchment; p is the proportion of the sediment load generated by hillslope erosion per lake or sea-draining catchment that is deposited on floodplains in the catchment, set to 5% based on previous SedNetNZ parameterisation carried out in the Manawatū (Dymond et al. 2016); S_t is the total sediment (t yr⁻¹) generated by hillslope erosion per lake or sea-draining catchment; L_i is the reach length (m) on floodplain in the ith sub-catchment; and $accS_i$ is the total accumulated (upstream) sediment from hillslope erosion (t yr⁻¹) in the ith sub-catchment.

Appendix B – Climate change projections

The effect of future climate change on erosion and suspended sediment loads is modelled following the approach of Basher et al. (2020). Six CMIP5 (Coupled Model Intercomparison Project) global climate models (GCMs) (BCC-CSM1.1, CESM1-CAM5, GFDL-CM3, GISS-E2-R, HadGEM2-ES, and NorESM1-M) were coupled with the New Zealand Regional Climate Model (Sood 2014) by the Ministry for the Environment (2018) to characterise future temperature and precipitation to 2100 on a 5 km grid.

Four forcing scenarios from the Inter-governmental Panel on Climate Change's fifth assessment report (IPCC AR5; IPCC 2013), known as representative concentration pathways (RCPs), are used to drive the models, and represent different radiative forcing based on greenhouse gas trajectories (Ministry for the Environment 2018). The RCP pathways represent total radiative forcing of 2.6 W m⁻² (a mitigation pathway), 4.5 W m⁻² and 6.0 W m⁻² (stabilisation pathways), and 8.5 W m⁻² (very high greenhouse gas concentrations), referred to as RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. Variations in the climate change scenarios become more evident after 2035 due to divergence in the radiative forcing pathways (RCPs) (Basher et al. 2020).

The effect of climate change on erosion processes is represented in SedNetNZ using different climatic variables to drive changes in different erosion processes. In the hillslope domain, surficial erosion is modelled for each climate scenario using the estimated change in mean annual rainfall from the RCM models to directly adjust P in Equation A1 (Basher et al. 2020). Mass movement erosion is assumed to change as a function of changing storminess (i.e. a change in storm total rainfall resulting from changes in frequency and magnitude of storm events) across the region. This change in storminess is used to derive a proportional change in the density of shallow landsliding that occurs under each climate scenario, which is used to represent a factor of change, CF, in all hillslope mass movement-dominated erosion processes, following Manderson et al. 2015, Basher et al. 2020, and Neverman et al. 2023.

The change in storminess under each climate scenario is calculated by adjusting historical rainfall records (CliFlo; NIWA 2021) by an augmentation factor based on predicted changes in storm rainfall as a result of the change in temperature:

$$R' = R(1 + \Delta T AF) \tag{B1}$$

where R' is future rainfall, R is historical rainfall, ΔT is the future absolute change in temperature relative to baseline, and AF is the augmentation factor. AF is derived from the estimated change in rainfall depth per 1°C increase in temperature calculated by the Ministry for the Environment (2018) for a 30 yr ARI 48 h duration rainfall event, which is assumed to represent the dominant landslide triggering event (Basher et al. 2020), giving a value of 0.073. Rain gauges with complete records for the last 50 years across the region were selected from CliFlo (NIWA 2021) and used to represent historical rainfall. At each gauge, Equation B1 was used to calculate R' under temperature changes up to 3°C.

Storm events were then identified in the baseline and future rainfall records as consecutive days where rainfall exceeded 10 mm per day. The storms were considered landslide-

producing events if >150 mm of rain fell in a 48 h period during the event. The total rainfall for the storm event was used to estimate the density of shallow landslides produced in each rainfall record for baseline and climate scenarios using the relationship between storm total rainfall and shallow landslide density identified by Reid and Page (2003):

$$LD = mR_s + b (B2)$$

where LD is the density of shallow landslides per km²; R_S is the total rainfall for the storm event; m is the slope of the linear relationship between LD and R_S , which was set to 0.72 (Basher et al. 2020); and b is the y-intercept of the relationship, calculated by solving for b under the assumption LD = 0 when $R_S \le 150$ mm:

$$0 = 150m + b \tag{B3}$$

$$b = -136.8$$
 (B4)

Linear models were developed for the relationship between LD and ΔT at each rain gauge location, and can be used to estimate the future landslide density given a change in temperature:

$$LD' = a\Delta T + LD \tag{B5}$$

where LD' is the future landslide density; a is the slope of the linear relationship between ΔT and LD', and therefore the absolute change in landslide density per 1°C of temperature change; and LD is the landslide density for the baseline rainfall record, R.

The change factor, *CF*, is then calculated at each rain gauge as the proportional increase in landslide density per 1°C of temperature change, calculated as:

$$CF = \frac{a}{LD} \tag{B6}$$

CF was then interpolated spatially using Sibson's (1981) natural neighbours interpolation. Gauges from across the North Island were included in the interpolation, including five from the Horizons region. This differs from the previous model (Basher et al. 2018, 2020), which used Land Environments of New Zealand (LENZ) level 1 classes to spatialise change factors, using one gauge per LENZ class to derive the change factor and apply it uniformly for the associated class. Two LENZ classes cover most of the Horizons region, each represented by a single rain gauge from the region.

Future rates of mass movement, MM', are then calculated by augmenting the baseline mass movement rate, MM, by CF and the change in temperature, ΔT , at the t^{h} pixel of the 5 km temperature change grids for each climate scenario, such that:

$$MM' = MM(1 + CF\Delta T_i) \tag{B7}$$

where MM represents the hillslope mass movement dominated processes, EL, EE, and EG, from Equations A7 to A9.

The effect of climate change on riverbank erosion is represented using indicative change factors to estimate mean annual flood (MAF) for each scenario per REC2 reach used in the bank erosion model (Smith, Herzig et al. 2019). The change factors are based on NIWA's modelling of climate change effects on flow, where proportional changes in MAF were reported for the Manawatū River under RCPs 2.6, 4.5, 6.0, and 8.5 (Collins et al. 2018).

Climate change effects on erosion and suspended sediment loads are reported for the upper (max), lower (min), and median (med) projected changes from the RCM ensemble for mid- and late century.

Appendix C – Reductions for NPS-FM visual clarity attribute bands

The reductions in suspended sediment loads required to meet NPS-FM (2020) suspended fine sediment objectives were estimated following Neverman et al. (2019), Neverman et al. (2021a, 2021b), and Neverman and Smith (2022) using a national-scale empirical model relating reductions in average annual suspended sediment load to changes in median visual clarity developed by Hicks, Haddadchi et al. (2019), as recommended by the Ministry for the Environment (2022a). The baseline attribute state was based on modelled median visual clarity data for each segment of the REC2 river network supplied by HRC, while the attribute state thresholds were defined using Table C1 (reproduced from the NPS-FM 2020) and the national sediment class map developed for the NPS-FM by Hicks and Shankar (2020). Figure C1 (below) displays the spatial pattern in visual clarity national bottom line (NBL) values across the Horizons region.

The proportional reduction in load required to achieve each attribute band was calculated as a function of the difference between the baseline and minimum numeric attribute state for each band:

$$PR_v = 1 - (V_o/V_b)^{1/a} (C1)$$

where PR_v is the minimum proportional reduction in load required to achieve the attribute state, V_o is the minimum visual clarity for each band, V_b is the baseline median visual clarity, and a was assumed to take the national average reported by Hicks, Haddadchi et al. (2019) as -0.76.

Given that the NBL threshold overlaps with the bottom of the range for band C, our analysis examines the reductions required to meet the national bottom line, band B, and band A. Achieving band C requires only a marginal increase in load reduction from that required to achieve the NBL.

To identify which attribute band an REC2 segment would comply with after existing erosion mitigation associated with WFPs is completed, the reduction in mean annual load between the 2021 baseline and future 5 yr interval scenarios was compared to the required load reduction to achieve each attribute band. Where the achieved reduction was higher than the required load reduction, the associated attribute band is considered achievable.

Table C1. Attribute bands and numeric attribute states for fine suspended sediment

Attribute band and description		ded sedin	ibute state nent class y (m))	•
	1	2	3	4
A Minimal impact of suspended sediment on instream biota. Ecological communities are similar to those observed in natural reference conditions.	≥1.78	≥0.93	≥2.95	≥1.38
B Low to moderate impact of suspended sediment on instream biota. Abundance of sensitive fish species may be reduced.	<1.78 and ≥1.55	<0.93 and ≥0.76	<2.95 and ≥2.57	<1.38 and ≥1.17
C Moderate to high impact of suspended sediment on instream biota. Sensitive fish species may be lost.	<1.55 and >1.34	<0.76 and >0.61	<2.57 and >2.22	<1.17 and >0.98
National bottom line (NBL)	1.34	0.61	2.22	0.98
High impact of suspended sediment on instream biota. Ecological communities are significantly altered, and sensitive fish and macroinvertebrate species are lost or at high risk of being lost.	<1.34	<0.61	<2.22	<0.98

Source: Reproduced from Table 8 in the NPS-FM 2020.

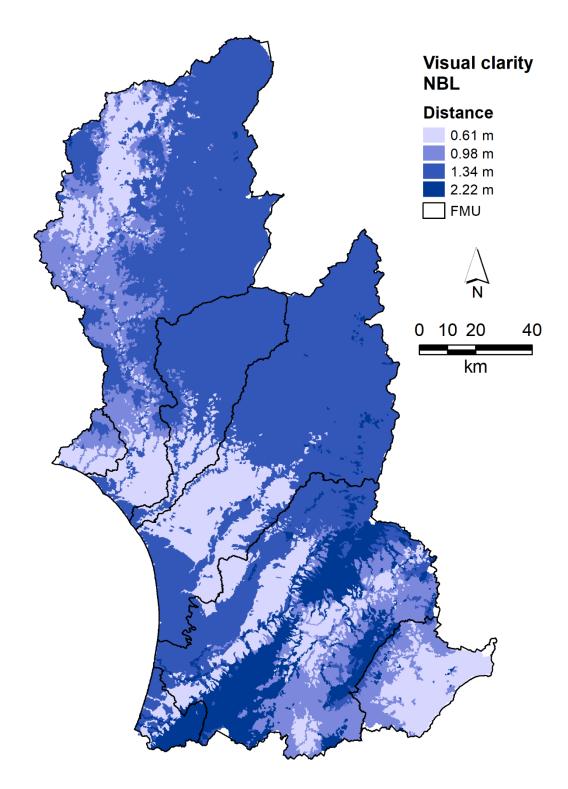


Figure C1. Required visual clarity for NPS-FM 2020 NBL according to sediment class.

Appendix D – Model scenarios used in previous report: Vale et al. 2022

Model simulations: SLUI scenarios

Region-wide simulations comprise three SLUI/WCS scenarios reflecting the application of WFPs under contemporary climate conditions for 2021 and 5 yr intervals from 2025 to 2100. The scenarios are:

- SC1: current state representing SLUI/WCS erosion mitigation implementation and maturity to date across the region, with an accompanying future scenario representing the maturation of existing works on farms with existing plans, while no further farm plans or works are completed
- SC2: future state representing SLUI/WCS erosion mitigation implementation and maturity to date, plus the future projected mapping rate of new farm plans, and the projected rate of on-farm erosion mitigation implementation and maturation of works across the region
- SC3: future state representing SLUI/WCS erosion mitigation implementation and maturity to date, plus a doubling of the future projected mapping rate of new farm plans, while maintaining the same projected rates of on-farm implementation and maturation of works as SC2.

The impact of projected climate change on suspended sediment loads was modelled for the three scenarios at mid-(2040) and late (2090) century. Six RCMs are used to select the minimum, median, and maximum model projected change across four RCPs for each of the scenarios.

Table D1 Summary of SedNetNZ SLUI/WCS scenarios from Vale et al. 2022

SLUI scenario	Description	Contemporary climate conditions	Projected future climate conditions
SC1: current SLUI/WCS	This scenario represents recent land cover (LCDBv5) and SLUI/WCS works completed to date (2021), including the maturity level of implemented erosion mitigation. The 5 yr intervals represent the maturation of existing works on mapped farms, while no further farm plans or works are completed.		Climate change projections on mean annual
SC2: future SLUI/WCS	This scenario represents recent land cover (LCDBv5) with both the SLUI/WCS works completed to date, combined with the projected rate of new SLUI/WCS farm plan mapping and the projected rates of implementation and maturation of erosion mitigation.	Projections on mean annual suspended sediment loads modelled for 2021, and 5 yr intervals from 2025 to 2100.	suspended sediment loads at mid- (2040) and late century (2090). Six RCMs are used to select the minimum, median, and
SC3: future SLUI/WCS – doubled rate of new farm plans	This scenario represents recent land cover (LCDBv5) with both the SLUI/WCS works completed to date, combined with a doubling of the projected rate of new SLUI/WCS farm plan mapping. The projected rates of implementation and maturation of erosion mitigation remain the same as SC2.		maximum model projected change across 4 RCPs.

Appendix E – Model evaluation and limitations

Model limitations

Erosion process representation

The main limitations in the surficial erosion component of SedNetNZ relate to the calculation of the \mathcal{C} and \mathcal{K} factors in the NZUSLE, and the availability of suitable input data. The updated model uses a spatially variable K factor instead of the uniform \mathcal{K} factor applied in earlier NZUSLE modelling (e.g. Dymond et al. 2014). The further acquisition of higher-resolution soils data for the Horizons region, such as S-map, may improve estimates of surficial erosion.

Shallow landslides are initiated by storm events over a triggering threshold. This means the landslide load in any given year can vary significantly from the mean annual landslide load. This inter-annual variability in landslide occurrence is not represented in SedNetNZ. Instead, the storm-triggered shallow landslide contribution to the sediment load is averaged over a multi-decadal timescale. Calibration data from Manawatū (Dymond et al. 2016) were used to define the slope thresholds for landslide occurrence and density.

Both earthflow and gully erosion are represented in SedNetNZ using a spatial averaging approach based on estimated presence and spatial extent of these erosion features in the Erosion Terrains layer (Dymond et al. 2016). It is therefore possible that earthflow and gully erosion may be represented in sub-catchments that do not contain these features or may not be represented where they are present. Aerial imagery was used to evaluate selected catchments, and Erosion Terrain layers were adjusted if there was no evidence of active gully erosion.

Bank erosion prediction requires high-resolution spatial data on riparian woody vegetation. For this reason, riparian woody vegetation has been derived from 'EcoSat Woody' at 15 m resolution (Dymond & Shepherd 2004), as LCDB is less suitable for representing narrow strips of riparian vegetation due to its minimum mapping unit of 1 ha. Predictions of bank migration rates are therefore based on woody vegetation presence/absence in 2002. A further challenge relates to the spatial correspondence between mapped channel locations and woody vegetation, and changes in channel planform since mapping occurred. Availability of region-wide LiDAR data would enable improved spatial representation of riparian woody vegetation and spatial coherence with channel locations.

Climate change projections

There is a high degree of uncertainty in relation to the climate change projections and their impacts, arising from a) differences between climate models, b) divergent trajectories of future climate change depending on levels of greenhouse gas emissions, and c) how these changes affect erosion processes.

The choice of climate model affects estimates due to the range of models (RCMs), while the divergence in potential climate futures is captured by the four RCPs and produces a large range in potential impacts. This range means there can be considerable difference between the lowest and highest projections, especially at late century, and spatial variation in relative change across the region.

Further uncertainty is introduced concerning the applicability of some assumptions for the whole region. For example, the adjustment for predicting the change in storm rainfall per 1°C temperature increase (+7.3%) assumes that landslides are triggered by an ARI30 48 hr event. A uniform triggering threshold of 150 mm in 48 hr has been used to estimate landslide density, but this threshold may vary for different terrains and different mass movement processes (e.g. Reid & Page 2003; Basher et al. 2020). Projections for bank erosion rely on indicative changes to the modelled MAF from the Manawatū River based on available information (Collins et al. 2018) but this does not capture regional variablity in potential climate impacts on MAF. Nonetheless, this is an improvement on previous modelling of climate change effects using SedNetNZ, which did not include representation of the impact on bank erosion (Basher et al. 2020).

There is also a lack of information on the relationship between climate change and its impact on erosion processes in New Zealand. Basher et al. (2020) identified this knowledge gap, stating there had only been a few studies in New Zealand on the climate change impacts on erosion, and most of these consisted of general statements about likely trends rather than quantifying change. For instance, Crozier (2010) reviewed the basis for assessing the impact of climate change on landslides and found that although there is a strong theoretical basis for increased landslide activity as a result of predicted climate change, there is a high level of uncertainty resulting from the error margins inherent in downscaling GCMs spatially and temporally. Due to this high uncertainty, the results of the climate change projections should be interpreted as indicative of trends rather than absolute values (Basher et al. 2020).

In the present report, we applied a refined method for estimating the effect of projected climate change on erosion compared to previous work (Basher et al. 2018, 2020). The refinements included a) increasing the number of long-term rainfall records used to compute mass movement change factors (section 4.2.4) from two to five in the Horizons region, as well as including gauges bordering the Horizons region; and b) spatially interpolating change factor values across a continuous grid. The interpolation procedure replaces use of LENZ (Leathwick et al. 2003), which previously formed the basis for uniformly applying change factors to LENZ classes within the region.

These changes in how we estimate the effects of climate change on erosion altered the magnitude of projected climate change impacts on suspended sediment loads compared to previous work. For instance, Basher et al. (2020) estimated a region-wide increase in sediment loads of 8.3–24% and 53–224% by 2043 and 2090, respectively, using the previous method. In contrast, we estimate an increase in regional load of 8–60% and 2–119% across all RCPs for SC1 by 2040 and 2090, respectively. This comparison shows a sizeable reduction in the potential increase in sediment loads by end century using the refined method for determining climate change impacts.

However, other factors contribute to these differences, which somewhat limits direct comparison. These include a) use of different baselines for computing relative changes in load (i.e. 2004 in Basher et al. 2020 versus 2021 in the present report), and b)

representation of hillslope erosion processes only by Basher et al. (2020) versus hillslope and bank erosion processes in the present study.

Reductions required to meet visual clarity attribute bands

Mean annual suspended sediment load reductions to achieve visual clarity and suspended fine sediment objectives were estimated using equations developed by Hicks, Haddadchi et al. (2019) from simplifications in the relationships reported by Dymond et al. (2017). A key assumption for calculating required load reductions to meet objectives is that for each site, the relationship between suspended sediment load and the flow frequency distribution remain constant. In reality, this relationship may change due to changes in catchment hydrology leading to changes in the relationship between a given flow and suspended sediment load (Hicks, Haddadchi et al. 2019). As data are not presently available to predict these changes, we assume that the associated relationships remain constant. This assumption is particularly important when modelling changes in visual clarity under different scenarios, especially the climate change scenarios. Because these scenarios may significantly change the rainfall regime and land cover, both of which would result in changes in hydrology, the relationship between visual clarity and sediment load may differ at a given REC2 segment compared with the 2021 baseline.

We have estimated the required load reductions using empirical models fitted to a national dataset. This should result in the models being fitted to a wide range of catchment variables and therefore representing the variability across Horizons. Sites from Horizons were used in the national dataset (see Hicks, Haddadchi et al. 2019) but may lead to under- or over estimation of the required reductions at any one location. Also, visual clarity thresholds are based on one of four sediment classes assigned to the REC2 segment, which can lead to abrupt changes in target thresholds for adjacent REC2 segments.

SLUI sediment load reduction

There is significant uncertainty regarding the effectiveness, maturity, and implementation rates of SLUI WFPs, as well as the selection of new farms. The effectiveness of each erosion mitigation used values from previous SedNetNZ modelling, which are based on the literature. Better data on the effectiveness of erosion mitigation at the whole-farm and whole-catchment scale are needed to improve the prediction of sediment load reduction, especially if values can be derived from or calibrated with local data. The maturity rate of each erosion mitigation could also benefit from better data that are locally calibrated to reflect tree species, growing conditions, and success rates of new plantings in the region.

The implementation rate of new works on a farm is one of the more difficult parameters to define. Here we applied it as an average annual proportional rate relative to what would be considered fully implemented as opposed to a set area of works completed per year. The estimated implementation rate was provided by HRC. Since there is no clear definition or measure of what 'fully implemented' represents for a given farm, it is difficult to estimate the implementation rate. A standardised measure of the mitigatable area of each farm would help to improve the implementation rate.

Using a farm-based implementation rate also means that the total area of works implemented each year is modelled to increase as new farms are selected and added to the total number of farms having works applied. In practice, the total area of works funded and implemented annually across the region may remain relatively constant. For reasons noted above, estimating the area of works represented by the implementation rate for each farm is challenging. However, if we consider the maximum mitigatable area of a farm to be represented by the area of erodible, high, and top HEL pasture, and the minimum mitigable area to be represented by the area of high and top HEL pasture, then we can approximate a maximum and minimum average annual estimate of the total area of works for the modelling period (2021 to 2100). These maximum and minimum areas were determined for each mapped farm based on the SLUI farm data provided. These areas were then used to derive an average proportion of the pasture area for each SLUI priority class, which could then be applied to unmapped farms at the rate of future selection and associated implementation rate. This results in a minimum and maximum annual average of c. 1780 ha yr⁻¹ and c. 4,990 ha yr⁻¹, respectively, or a mean c. 3,380 ha yr⁻¹ over the simulated period from 2021 to 2100 for SC2 (Table 28).

An approximation of the average annual rate of works according to work type can also be estimated by using the proportion of works applied within the model simulation (Table E1). These proportions were based on the mapped area of past works for each priority class (Table 3), which recognises that works vary based on WFP priority and the terrain they generally represent. The proportions were also weighted by erosion process loads to ensure works were not applied to areas where there were no modelled loads for the erosion process targeted by each works. The resulting approximations should not be overinterpreted since the works proportions they are based on were used to weight the effectiveness (which varies from 70 to 90 %) applied to each farm, and not to determine the actual area of each type of work. A summary of the estimated region-wide proportion of works for the end of the simulated period, and by FMU, is provided in Table E2.

Table E1. Estimated minimum, maximum, and mean annual average rate of works completed over the simulated period from 2021 to 2100

		Estimat	ed area of wo	orks per year ((ha yr ⁻¹)	
Erosion mitigation works		SC2			SC3	
	min	mean	max	min	mean	max
Afforestation	890	1,630	2,370	1,010	1,920	2,820
Bush retirement	450	760	1,080	710	1,300	1,880
Riparian retirement	110	290	470	220	660	1,110
Spaced planting	320	680	1,040	410	940	1,470
Gully planting	10	20	30	10	20	40
Total	1,780	3,380	4,990	2,360	4,840	7,320

New farms were randomly selected for implementation based on the proportions of each SLUI priority class. We do not know how representative this selection will be of the actual order of new farms selected in the future. We also do not know how sensitive the mean annual local and region-wide loads are to the selection order of new farms. Evaluating the sensitivity of this component would require running multiple iterations of SedNetNZ using different farm selection orders.

Table E2 Estimated proportion of works for each erosion mitigation type at the end of the simulated period (2100), both region-wide and per FMU

				Pro	portion of	works (%)		
						FMU			
Scenario	Erosion mitigation	Region -wide	Kai Iwi	Manawatū	Puketoi ki Tai	Rangitīkei- Turakina	Waiopehu	Whangaehu	Whanganui
	Afforestation	44	48	43	69	35	100	24	47
	Retirement	30	25	16	14	29	0	34	41
SC1	Riparian retirement	10	6	14	7	18	0	12	5
	Spaced planting	14	15	26	10	17	0	22	6
	Gully planting	2	6	1	0	1	0	8	1
	Afforestation	48	51	42	48	49	32	44	54
	Retirement	23	17	19	26	23	5	29	22
SC2	Riparian retirement	9	3	15	4	9	29	9	5
	Spaced planting	20	27	24	22	18	33	18	18
	Gully planting	1	1	1	0	1	0	0	0
	Afforestation	40	42	31	42	42	31	38	47
	Retirement	26	26	20	34	26	15	28	29
SC3	Riparian retirement	14	5	25	3	14	22	15	6
	Spaced planting	20	27	23	20	18	32	18	17
	Gully planting	1	1	1	0	1	0	0	0

Note: SC1 represents the past proportions from mapped works (based on HRC data) since no further works are applied in this scenario.

Appendix F – Length and proportion of River Environment Classification v2 (REC2) segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity), summarised by Freshwater Management Unit (FMU) without the effects of climate change

Table F1 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity), summarised by FMU and stream order for PS1

PS1					Lengt	h of REC2 s	egments a	achieving v	isual clarit	y attribute	bands an	d NBL	
Attribute	FMU	Stream order	Total length	20	21	20	40	20	60	20	80	21	00
band	FIVIO	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		1	262	102	39%	128	49%	145	55%	166	63%	193	73%
		2	146	58	39%	72	49%	86	59%	108	74%	121	83%
	Kai Iwi	3	68	23	34%	26	38%	28	41%	47	70%	56	83%
	Kai IWi	4	59	29	49%	40	68%	45	77%	50	85%	53	91%
		5	22	-	0%	3	12%	5	24%	5	24%	11	50%
		Total	558	212	38%	269	48%	309	55%	376	67%	435	78%
		1	4,825	1,203	25%	1,532	32%	1,916	40%	2,380	49%	2,749	57%
		2	2,484	561	23%	737	30%	911	37%	1,159	47%	1,389	56%
A band		3	1,261	257	20%	332	26%	415	33%	566	45%	699	55%
Aband	Manawatū	4	651	75	12%	118	18%	214	33%	282	43%	351	54%
	Manawatu	5	439	73	17%	87	20%	117	27%	164	37%	234	53%
		6	162	5	3%	15	9%	25	16%	101	62%	129	80%
		7	119	-	0%	-	0%	5	5%	42	35%	42	35%
		Total	9,941	2,173	22%	2,821	28%	3,602	36%	4,695	47%	5,594	56%
		1	875	202	23%	334	38%	495	57%	639	73%	706	81%
	Puketoi ki Tai	2	435	84	19%	138	32%	214	49%	300	69%	354	81%
	FUREIOI KI TAI	3	259	39	15%	71	28%	110	42%	166	64%	212	82%
		4	139	13	9%	15	11%	31	22%	61	44%	114	82%

PS1					Lengt	h of REC2 s	egments	achieving v	isual clarit	ty attribute	bands an	d NBL	
Attribute	F8411	C 1	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		5	71	-	0%	-	0%	1	1%	29	41%	44	62%
	Puketoi ki Tai (cont.)	6	46	-	0%	-	0%	-	0%	-	0%	22	48%
	(corra)	Total	1,825	339	19%	558	31%	850	47%	1,196	66%	1,452	80%
		1	4,349	1,241	29%	1,707	39%	2,241	52%	2,660	61%	2,928	67%
		2	2,111	592	28%	803	38%	1,046	50%	1,257	60%	1,425	68%
		3	1,035	289	28%	368	36%	509	49%	663	64%	730	71%
	Rangitīkei-	4	480	207	43%	243	51%	321	67%	388	81%	410	85%
	Turakina	5	293	127	43%	133	45%	135	46%	209	71%	243	83%
		6	156	19	12%	36	23%	57	36%	91	59%	104	66%
		7	139	-	0%	-	0%	-	0%	75	54%	122	88%
		Total	8,563	2,476	29%	3,289	38%	4,309	50%	5,344	62%	5,962	70%
A band		1	322	69	21%	93	29%	93	29%	93	29%	97	30%
(cont.)		2	161	25	15%	33	21%	33	21%	34	21%	39	24%
	Maria a ala	3	92	27	29%	30	33%	30	33%	30	33%	30	33%
	Waiopehu	4	38	19	50%	21	55%	21	55%	21	56%	22	57%
		5	34	19	57%	23	67%	23	68%	23	68%	23	68%
		Total	647	159	25%	199	31%	200	31%	201	31%	210	33%
		1	1,682	588	35%	861	51%	1,049	62%	1,191	71%	1,269	75%
		2	892	326	37%	470	53%	564	63%	640	72%	682	76%
		3	409	171	42%	225	55%	271	66%	302	74%	324	79%
	Whangaehu	4	223	50	22%	108	48%	128	58%	151	68%	168	75%
		5	126	42	33%	56	44%	62	49%	107	85%	107	85%
		6	145	-	0%	-	0%	-	0%	29	20%	136	94%
		Total	3,478	1,177	34%	1,720	49%	2,075	60%	2,421	70%	2,686	77%

PS1					Lengt	h of REC2 s	egments	achieving v	isual clari	ty attribute	bands an	d NBL	
Attribute	FAALL	Cture and and an	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		1	5,833	3,816	65%	4,078	70%	4,375	75%	4,697	81%	4,948	85%
		2	2,871	1,918	67%	2,046	71%	2,182	76%	2,362	82%	2,516	88%
		3	1,397	972	70%	1,032	74%	1,093	78%	1,162	83%	1,239	89%
A band	VA/In a se a se a se si	4	790	512	65%	557	70%	589	75%	645	82%	728	92%
(cont.)	Whanganui	5	404	332	82%	342	85%	350	87%	365	90%	389	96%
		6	166	28	17%	37	22%	76	46%	96	58%	127	77%
		7	247	-	0%	-	0%	-	0%	-	0%	25	10%
		Total	11,709	7,579	65%	8,091	69%	8,664	74%	9,328	80%	9,973	85%
		1	262	195	74%	207	79%	216	82%	222	85%	233	89%
		2	146	116	79%	126	86%	129	88%	132	90%	138	94%
	Kai Iwi	3	68	50	74%	58	85%	59	86%	62	91%	63	92%
		4	59	51	87%	51	87%	52	89%	57	96%	59	99%
		5	22	5	24%	5	24%	11	50%	19	85%	22	100%
		Total	558	418	75%	448	80%	467	84%	492	88%	514	92%
		1	4,825	2,185	45%	2,547	53%	2,902	60%	3,163	66%	3,390	70%
B band		2	2,484	1,076	43%	1,266	51%	1,438	58%	1,598	64%	1,734	70%
D Dania		3	1,261	529	42%	615	49%	688	55%	805	64%	896	71%
	Manawatū	4	651	210	32%	234	36%	314	48%	361	55%	448	69%
	iviariawatu	5	439	159	36%	194	44%	213	48%	268	61%	325	74%
		6	162	15	9%	62	38%	101	62%	107	66%	161	99%
		7	119	4	4%	38	32%	42	35%	42	35%	42	35%
		Total	9,941	4,179	42%	4,956	50%	5,697	57%	6,344	64%	6,997	70%
	Pukatoi ki Tai	1	875	401	46%	569	65%	677	77%	739	84%	772	88%
	Puketoi ki Tai	2	435	156	36%	247	57%	315	72%	363	83%	387	89%

PS1					Lengt	h of REC2	segments a	achieving v	isual clari	ty attribute	bands an	d NBL	
Attribute	FRALL	Ctucous oudou	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		3	259	89	34%	114	44%	165	64%	208	80%	233	90%
	51	4	139	25	18%	46	33%	72	52%	111	79%	130	94%
	Puketoi ki Tai (cont.)	5	71	-	0%	14	19%	29	41%	42	59%	56	79%
	(corre.)	6	46	-	0%	-	0%	-	0%	22	48%	22	48%
		Total	1,825	671	37%	990	54%	1,259	69%	1,484	81%	1,601	88%
		1	4,349	2,455	56%	2,894	67%	3,182	73%	3,415	79%	3,593	83%
		2	2,111	1,151	55%	1,324	63%	1,482	70%	1,612	76%	1,709	81%
		3	1,035	571	55%	657	63%	742	72%	808	78%	855	83%
	Rangitīkei-	4	480	319	66%	353	73%	386	80%	424	88%	441	92%
	Turakina	5	293	179	61%	206	70%	246	84%	263	90%	285	97%
		6	156	36	23%	57	36%	91	59%	104	66%	114	73%
B band		7	139	-	0%	1	1%	74	54%	110	79%	139	100%
(cont.)		Total	8,563	4,710	55%	5,491	64%	6,203	72%	6,737	79%	7,136	83%
		1	322	151	47%	173	54%	173	54%	175	54%	177	55%
		2	161	69	43%	80	50%	80	50%	83	51%	89	55%
	M/ai a a ala	3	92	48	53%	58	63%	58	63%	58	63%	58	63%
	Waiopehu	4	38	23	61%	24	62%	24	62%	24	63%	24	63%
		5	34	23	68%	23	68%	23	68%	25	74%	25	74%
		Total	647	315	49%	357	55%	358	55%	364	56%	373	58%
		1	1,682	1,258	75%	1,351	80%	1,439	86%	1,491	89%	1,520	90%
		2	892	685	77%	720	81%	765	86%	790	89%	799	90%
	Whangaehu	3	409	320	78%	334	81%	361	88%	365	89%	367	90%
		4	223	155	70%	166	74%	183	82%	201	90%	204	91%
		5	126	58	46%	62	49%	107	85%	107	85%	107	85%

PS1					Lengt	h of REC2 s	egments	achieving v	isual clari	ty attribute	bands an	d NBL	
Attribute	F8411	Ct	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
	Whangaehu	6	145	-	0%	-	0%	13	9%	138	95%	139	96%
	(cont.)	Total	3,478	2,476	71%	2,632	76%	2,868	82%	3,092	89%	3,136	90%
		1	5,833	4,742	81%	4,913	84%	5,138	88%	5,349	92%	5,494	94%
		2	2,871	2,366	82%	2,462	86%	2,588	90%	2,683	93%	2,756	96%
B band		3	1,397	1,154	83%	1,210	87%	1,261	90%	1,325	95%	1,355	97%
(cont.)	Whanganui	4	790	615	78%	658	83%	687	87%	740	94%	773	98%
	Whanganui	5	404	369	91%	386	95%	392	97%	404	100%	404	100%
		6	166	79	47%	104	63%	128	77%	137	83%	161	97%
		7	247	-	0%	-	0%	3	1%	26	10%	61	25%
		Total	11,709	9,325	80%	9,732	83%	10,196	87%	10,665	91%	11,003	94%
		1	262	240	92%	242	92%	243	93%	249	95%	249	95%
		2	146	143	98%	143	98%	143	98%	144	99%	144	99%
	IZ-1T-1	3	68	67	98%	67	99%	67	99%	68	100%	68	100%
	Kai Iwi	4	59	56	95%	59	99%	59	100%	59	100%	59	100%
		5	22	15	67%	19	85%	22	100%	22	100%	22	100%
		Total	558	521	93%	530	95%	535	96%	542	97%	542	97%
NIDI		1	4,825	2,969	62%	3,424	71%	3,562	74%	3,713	77%	3,855	80%
NBL		2	2,484	1,491	60%	1,700	68%	1,787	72%	1,877	76%	1,973	79%
		3	1,261	708	56%	820	65%	886	70%	944	75%	1,003	80%
		4	651	329	51%	377	58%	409	63%	476	73%	531	82%
	Manawatū	5	439	208	47%	246	56%	268	61%	313	71%	375	85%
		6	162	83	51%	115	71%	121	74%	162	100%	162	100%
		7	119	42	35%	42	35%	42	35%	42	35%	42	35%
		Total	9,941	5,829	59%	6,724	68%	7,074	71%	7,528	76%	7,941	80%

PS1					Lengt	h of REC2 s	egments a	achieving v	isual clarit	ty attribute	bands and	d NBL	
Attribute	FRALL	Cturana and an	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		1	875	679	78%	740	85%	784	90%	808	92%	823	94%
		2	435	298	69%	346	80%	377	87%	395	91%	405	93%
		3	259	165	63%	188	73%	214	83%	243	94%	251	97%
	Puketoi ki Tai	4	139	59	43%	101	72%	109	78%	128	92%	139	100%
		5	71	29	41%	29	41%	43	61%	59	83%	71	100%
		6	46	-	0%	22	48%	22	48%	22	48%	46	100%
		Total	1,825	1,231	67%	1,426	78%	1,550	85%	1,655	91%	1,736	95%
		1	4,349	3,201	74%	3,431	79%	3,572	82%	3,708	85%	3,818	88%
		2	2,111	1,456	69%	1,612	76%	1,700	81%	1,781	84%	1,835	87%
	Rangitīkei- Turakina	3	1,035	748	72%	813	79%	852	82%	868	84%	902	87%
		4	480	393	82%	412	86%	447	93%	450	94%	457	95%
NBL		5	293	236	80%	246	84%	263	90%	288	98%	289	99%
(cont.)		6	156	91	59%	104	66%	104	66%	104	66%	114	73%
		7	139	16	11%	75	54%	110	79%	139	100%	139	100%
		Total	8,563	6,140	72%	6,693	78%	7,048	82%	7,337	86%	7,553	88%
		1	322	164	51%	200	62%	201	62%	203	63%	203	63%
		2	161	77	48%	94	59%	94	59%	98	61%	101	62%
	Waiopehu	3	92	59	64%	64	69%	64	69%	64	70%	64	70%
	vvalopenu	4	38	24	62%	31	82%	31	82%	31	82%	32	84%
		5	34	23	68%	25	74%	25	74%	25	74%	25	74%
		Total	647	347	54%	414	64%	415	64%	421	65%	425	66%
		1	1,682	1,494	89%	1,539	92%	1,572	93%	1,593	95%	1,603	95%
	Whangaehu	2	892	797	89%	825	92%	837	94%	842	94%	842	94%
		3	409	372	91%	390	95%	393	96%	395	96%	395	96%

PS1					Lengt	th of REC2 s	segments a	achieving v	isual clari	ty attribute	bands an	d NBL	
Attribute	FRALL	Cturani andan	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		4	223	175	79%	189	85%	201	90%	205	92%	205	92%
	Whangaehu	5	126	77	61%	107	85%	108	85%	108	85%	111	88%
	(cont.)	6	145	-	0%	20	14%	95	65%	140	96%	145	100%
_		Total	3,478	2,915	84%	3,071	88%	3,207	92%	3,284	94%	3,301	95%
		1	5,833	5,368	92%	5,485	94%	5,570	95%	5,640	97%	5,689	98%
NBL	NBL	2	2,871	2,647	92%	2,714	95%	2,763	96%	2,806	98%	2,824	98%
(cont.)		3	1,397	1,294	93%	1,328	95%	1,359	97%	1,371	98%	1,380	99%
		4	790	715	90%	749	95%	765	97%	788	100%	788	100%
	Whanganui	5	404	391	97%	404	100%	404	100%	404	100%	404	100%
		6	166	134	80%	137	83%	143	86%	166	100%	166	100%
		7	247	9	4%	24	10%	37	15%	61	25%	156	63%
		Total	11,709	10,557	90%	10,841	93%	11,042	94%	11,235	96%	11,406	97%

Table F2. Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity), summarised by FMU and stream order for PS2

PS2					Lengt	h of REC2	segments	achieving v	isual clari	ity attribut	e bands ar	nd NBL	
Attribute	FAALL	Cturant and a	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		1	262	102	39%	158	60%	185	70%	188	72%	190	72%
		2	146	58	39%	110	75%	120	82%	122	84%	122	84%
	Kai Iwi	3	68	23	34%	50	74%	57	84%	57	84%	57	84%
	Kai iwi	4	59	29	49%	50	86%	59	99%	59	99%	59	99%
		5	22	-	0%	5	24%	22	98%	22	100%	22	100%
		Total	558	212	38%	374	67%	442	79%	449	80%	450	81%
		1	4,825	1,203	25%	2,194	45%	2,766	57%	2,831	59%	2,853	59%
		2	2,484	561	23%	1,086	44%	1,420	57%	1,460	59%	1,467	59%
		3	1,261	257	20%	509	40%	734	58%	753	60%	758	60%
		4	651	75	12%	266	41%	411	63%	415	64%	417	64%
A band	Manawatū	5	439	73	17%	156	35%	278	63%	287	65%	291	66%
		6	162	5	3%	81	50%	146	90%	146	90%	146	90%
		7	119	-	0%	42	35%	42	35%	42	35%	42	35%
		Total	9,941	2,173	22%	4,333	44%	5,796	58%	5,934	60%	5,973	60%
		1	875	202	23%	595	68%	719	82%	734	84%	739	84%
		2	435	84	19%	266	61%	362	83%	369	85%	369	85%
		3	259	39	15%	142	55%	227	88%	231	89%	231	89%
	Puketoi ki Tai	4	139	13	9%	53	38%	131	94%	137	98%	137	98%
		5	71	-	0%	26	37%	53	74%	53	74%	53	74%
		6	46	-	0%	-	0%	22	48%	22	48%	22	48%
		Total	1,825	339	19%	1,082	59%	1,514	83%	1,545	85%	1,550	85%

PS2					Length of REC2 segments achieving visual clarity attribute bands and NBL									
Attribute band	FMU	Stream order	Total length (km)	2021		2040		2060		2080		2100		
				km	%	km	%	km	%	km	%	km	%	
A band (cont.)	Rangitīkei- Turakina	1	4,349	1,241	29%	2,520	58%	2,955	68%	2,985	69%	3,003	69%	
		2	2,111	592	28%	1,187	56%	1,421	67%	1,443	68%	1,447	69%	
		3	1,035	289	28%	601	58%	710	69%	733	71%	737	71%	
		4	480	207	43%	345	72%	410	85%	410	85%	410	85%	
		5	293	127	43%	199	68%	255	87%	255	87%	255	87%	
		6	156	19	12%	70	45%	118	75%	156	100%	156	100%	
		7	139	-	0%	21	15%	139	100%	139	100%	139	100%	
		Total	8,563	2,476	29%	4,943	58%	6,008	70%	6,121	71%	6,148	72%	
	Waiopehu	1	322	69	21%	94	29%	97	30%	98	30%	98	30%	
		2	161	25	15%	34	21%	39	24%	39	24%	39	24%	
		3	92	27	29%	30	33%	31	34%	31	34%	31	34%	
		4	38	19	50%	21	57%	22	57%	22	57%	22	57%	
		5	34	19	57%	23	68%	25	74%	25	74%	25	74%	
		Total	647	159	25%	202	31%	214	33%	215	33%	215	33%	
	Whangaehu	1	1,682	588	35%	1,164	69%	1,239	74%	1,255	75%	1,263	75%	
		2	892	326	37%	628	70%	652	73%	657	74%	672	75%	
		3	409	171	42%	302	74%	313	76%	313	76%	313	76%	
		4	223	50	22%	151	68%	168	75%	168	75%	168	75%	
		5	126	42	33%	107	85%	107	85%	107	85%	107	85%	
		6	145	-	0%	-	0%	136	94%	136	94%	136	94%	
		Total	3,478	1,177	34%	2,352	68%	2,616	75%	2,636	76%	2,659	76%	
	Whanganui	1	5,833	3,816	65%	4,658	80%	4,971	85%	4,991	86%	5,003	86%	
		2	2,871	1,918	67%	2,347	82%	2,525	88%	2,536	88%	2,539	88%	
		3	1,397	972	70%	1,165	83%	1,265	91%	1,268	91%	1,269	91%	

PS2					Lengt	h of REC2 s	segments	achieving v	risual clar	ity attribute	e bands a	nd NBL	
Attribute	FMU	Stream order	Total length	20	21	20	40	20	60	20	80	21	00
band	FIVIO	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		4	790	512	65%	654	83%	749	95%	749	95%	749	95%
A 1 1		5	404	332	82%	356	88%	389	96%	389	96%	389	96%
A band (cont.)	Whanganui (cont.)	6	166	28	17%	95	57%	135	81%	158	95%	159	96%
(60116.)	(60116.)	7	247	-	0%	-	0%	80	32%	105	43%	105	43%
		Total	11,709	7,579	65%	9,274	79%	10,114	86%	10,197	87%	10,213	87%
		1	262	195	74%	222	85%	229	87%	229	87%	230	88%
		2	146	116	79%	131	90%	133	91%	133	91%	133	91%
	Kai Iwi	3	68	50	74%	63	92%	63	92%	63	92%	63	92%
	Kai IWi	4	59	51	87%	57	97%	59	100%	59	100%	59	100%
		5	22	5	24%	19	85%	22	100%	22	100%	22	100%
		Total	558	418	75%	492	88%	506	91%	506	91%	506	91%
		1	4,825	2,185	45%	3,105	64%	3,418	71%	3,457	72%	3,477	72%
		2	2,484	1,076	43%	1,547	62%	1,754	71%	1,791	72%	1,800	72%
		3	1,261	529	42%	767	61%	925	73%	935	74%	940	75%
B band	Mananata	4	651	210	32%	352	54%	477	73%	483	74%	483	74%
	Manawatū	5	439	159	36%	245	56%	344	78%	346	79%	346	79%
		6	162	15	9%	101	62%	162	100%	162	100%	162	100%
		7	119	4	4%	42	35%	42	35%	42	35%	42	35%
		Total	9,941	4,179	42%	6,159	62%	7,122	72%	7,216	73%	7,250	73%
		1	875	401	46%	713	81%	780	89%	783	90%	785	90%
		2	435	156	36%	343	79%	385	88%	393	90%	394	91%
	Puketoi ki Tai	3	259	89	34%	199	77%	235	91%	237	92%	237	92%
		4	139	25	18%	98	70%	137	98%	137	98%	137	98%
		5	71	-	0%	29	41%	61	87%	65	92%	65	92%

PS2					Lengt	h of REC2 s	egments	achieving v	isual clari	ty attribut	e bands ar	nd NBL	
Attribute	FMU	Stream order	Total length	20	21	20	40	20	60	20	80	21	00
band	FINIO	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
	Puketoi ki Tai	6	46	-	0%	22	48%	46	100%	46	100%	46	100%
	(cont.)	Total	1,825	671	37%	1,405	77%	1,644	90%	1,662	91%	1,664	91%
		1	4,349	2,455	56%	3,334	77%	3,589	83%	3,603	83%	3,612	83%
		2	2,111	1,151	55%	1,587	75%	1,711	81%	1,712	81%	1,717	81%
		3	1,035	571	55%	793	77%	846	82%	853	82%	857	83%
	Rangitīkei-	4	480	319	66%	420	88%	432	90%	437	91%	437	91%
	Turakina	5	293	179	61%	259	89%	285	97%	285	97%	285	97%
		6	156	36	23%	104	66%	156	100%	156	100%	156	100%
		7	139	-	0%	97	70%	139	100%	139	100%	139	100%
		Total	8,563	4,710	55%	6,594	77%	7,159	84%	7,185	84%	7,203	84%
		1	322	151	47%	173	54%	178	55%	178	55%	178	55%
B band (cont.)		2	161	69	43%	82	51%	89	55%	89	55%	89	55%
(corre.)	VA/ata a ala	3	92	48	53%	58	63%	58	63%	58	63%	58	63%
	Waiopehu	4	38	23	61%	24	62%	25	65%	25	65%	25	65%
		5	34	23	68%	23	68%	25	74%	25	74%	25	74%
		Total	647	315	49%	360	56%	374	58%	375	58%	375	58%
		1	1,682	1,258	75%	1,480	88%	1,509	90%	1,512	90%	1,519	90%
		2	892	685	77%	785	88%	790	89%	795	89%	798	90%
		3	409	320	78%	365	89%	366	89%	366	89%	366	89%
	Whangaehu	4	223	155	70%	201	90%	201	90%	203	91%	204	91%
		5	126	58	46%	107	85%	107	85%	107	85%	107	85%
		6	145	-	0%	81	56%	139	96%	139	96%	139	96%
		Total	3,478	2,476	71%	3,019	87%	3,113	89%	3,122	90%	3,134	90%

PS2					Lengt	h of REC2 s	egments	achieving v	isual clari	ity attribute	e bands ar	nd NBL	
Attribute	FRALL	C4	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		1	5,833	4,742	81%	5,372	92%	5,482	94%	5,488	94%	5,498	94%
		2	2,871	2,366	82%	2,698	94%	2,752	96%	2,756	96%	2,758	96%
		3	1,397	1,154	83%	1,332	95%	1,356	97%	1,360	97%	1,360	97%
B band	\\/\bananani	4	790	615	78%	743	94%	782	99%	782	99%	782	99%
(cont.)	Whanganui	5	404	369	91%	404	100%	404	100%	404	100%	404	100%
		6	166	79	47%	137	83%	166	100%	166	100%	166	100%
		7	247	-	0%	26	11%	116	47%	246	99%	246	100%
		Total	11,709	9,325	80%	10,711	91%	11,058	94%	11,202	96%	11,214	96%
		1	262	240	92%	249	95%	249	95%	249	95%	249	95%
		2	146	143	98%	144	99%	144	99%	144	99%	144	99%
	Kai Iwi	3	68	67	98%	68	100%	68	100%	68	100%	68	100%
	Kai iwi	4	59	56	95%	59	100%	59	100%	59	100%	59	100%
		5	22	15	67%	22	100%	22	100%	22	100%	22	100%
		Total	558	521	93%	542	97%	542	97%	543	97%	543	97%
		1	4,825	2,969	62%	3,674	76%	3,861	80%	3,894	81%	3,912	81%
NBL		2	2,484	1,491	60%	1,865	75%	1,982	80%	2,013	81%	2,019	81%
INBL		3	1,261	708	56%	937	74%	1,014	80%	1,025	81%	1,027	81%
	Manawatū	4	651	329	51%	437	67%	544	84%	552	85%	552	85%
	Manawatu	5	439	208	47%	278	63%	377	86%	380	87%	380	87%
		6	162	83	51%	144	89%	162	100%	162	100%	162	100%
		7	119	42	35%	42	35%	44	37%	57	48%	57	48%
		Total	9,941	5,829	59%	7,377	74%	7,985	80%	8,083	81%	8,109	82%
	Puketoi ki Tai	1	875	679	78%	799	91%	825	94%	827	94%	828	95%
	ruketoi ki Tal	2	435	298	69%	388	89%	406	93%	407	94%	411	94%

S2					Lengt	h of REC2 s	segments	achieving v	isual clari	ty attribut	e bands ar	nd NBL	
Attribute	FMU	Stream order	Total length	20	21	20	40	20	60	20	80	21	00
band	FINIO	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
		3	259	165	63%	229	89%	249	96%	250	96%	250	96%
		4	139	59	43%	117	84%	137	98%	137	98%	137	98%
	Puketoi ki Tai (cont.)	5	71	29	41%	47	67%	71	100%	71	100%	71	1009
	(corre.)	6	46	-	0%	22	48%	46	100%	46	100%	46	100
		Total	1,825	1,231	67%	1,603	88%	1,735	95%	1,738	95%	1,742	95%
		1	4,349	3,201	74%	3,668	84%	3,823	88%	3,836	88%	3,850	899
		2	2,111	1,456	69%	1,757	83%	1,827	87%	1,828	87%	1,830	879
		3	1,035	748	72%	864	84%	904	87%	904	87%	904	879
	Rangitīkei-	4	480	393	82%	449	94%	461	96%	461	96%	461	969
	Rangitīkei- Turakina	5	293	236	80%	286	98%	289	99%	289	99%	289	999
		6	156	91	59%	104	66%	156	100%	156	100%	156	100
NBL		7	139	16	11%	135	97%	139	100%	139	100%	139	100
(cont.)		Total	8,563	6,140	72%	7,263	85%	7,600	89%	7,614	89%	7,630	899
		1	322	164	51%	201	62%	205	64%	205	64%	205	649
		2	161	77	48%	94	59%	100	62%	101	63%	101	639
	14/-1 b	3	92	59	64%	64	69%	65	71%	65	71%	65	719
	Waiopehu	4	38	24	62%	31	82%	32	84%	32	84%	32	849
		5	34	23	68%	25	74%	25	74%	25	74%	25	749
		Total	647	347	54%	415	64%	428	66%	428	66%	428	669
		1	1,682	1,494	89%	1,594	95%	1,605	95%	1,606	96%	1,607	969
		2	892	797	89%	842	94%	845	95%	847	95%	847	959
	Whangaehu	3	409	372	91%	395	96%	395	96%	395	96%	395	969
		4	223	175	79%	205	92%	205	92%	205	92%	205	929
		5	126	77	61%	107	85%	108	85%	108	85%	108	85%

PS2					Lengt	h of REC2	segments	achieving v	isual clari	ity attribut	e bands ar	nd NBL	
Attribute	FRALL	Ctura un audau	Total length	20	21	20	40	20	60	20	80	21	00
band	FMU	Stream order	(km)	km	%	km	%	km	%	km	%	km	%
	Whangaehu	6	145	-	0%	140	96%	140	96%	140	96%	140	96%
	(cont.)	Total	3,478	2,915	84%	3,283	94%	3,299	95%	3,301	95%	3,302	95%
		1	5,833	5,368	92%	5,661	97%	5,680	97%	5,682	97%	5,684	97%
		2	2,871	2,647	92%	2,811	98%	2,826	98%	2,827	98%	2,828	99%
NBL		3	1,397	1,294	93%	1,373	98%	1,383	99%	1,383	99%	1,383	99%
(cont.)	\\/\lance	4	790	715	90%	788	100%	788	100%	788	100%	788	100%
	Whanganui	5	404	391	97%	404	100%	404	100%	404	100%	404	100%
		6	166	134	80%	166	100%	166	100%	166	100%	166	100%
		7	247	9	4%	61	25%	247	100%	247	100%	247	100%
		Total	11,709	10,557	90%	11,264	96%	11,494	98%	11,498	98%	11,501	98%

Appendix G – Length and proportion of River Environment Classification v2 (REC2) segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity), summarised by mid- and late century under projected climate change for each representative concentration pathway (RCP)

Table G1 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) by mid-century under projected climate change for PS1, represented by minimum, median, and maximum results for each RCP

			PS1		Length and	proportion	of REC2 segme	ents achieving	y visual clarity	attribute ban	ds and NBL for	each RCP
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCF	4.5	RCP	6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	7,046	39%	5,635	31%	5,712	31%	5,558	31%
			2	9,101	3,563	39%	2,783	31%	2,831	31%	2,723	30%
			3	4,521	1,760	39%	1,310	29%	1,323	29%	1,242	27%
			4	2,381	913	38%	672	28%	714	30%	613	26%
		min	5	1,388	547	39%	351	25%	361	26%	283	20%
			6	676	74	11%	44	7%	41	6%	-	0%
			7	505	-	0%	-	0%	-	0%	-	0%
Mid-	A la a a al		Total	36,720	13,903	38%	10,796	29%	10,982	30%	10,419	28%
century	A band		1	18,148	6,132	34%	6,408	35%	6,042	33%	5,922	33%
			2	9,101	2,962	33%	3,095	34%	2,916	32%	2,791	31%
			3	4,521	1,356	30%	1,469	32%	1,367	30%	1,293	29%
			4	2,381	746	31%	699	29%	668	28%	630	26%
		med	5	1,388	394	28%	320	23%	315	23%	277	20%
			6	676	44	7%	30	4%	33	5%	-	0%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	11,634	32%	12,022	33%	11,341	31%	10,913	30%

			PS1		Length and	l proportion	of REC2 segme	nts achieving	y visual clarity	attribute ban	ds and NBL fo	r each RCP
Davidad	Attribute	Stat	C+	Total length	RCF	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	5,202	29%	5,856	32%	5,886	32%	5,495	30%
			2	9,101	2,460	27%	2,777	31%	2,809	31%	2,538	28%
			3	4,521	1,090	24%	1,232	27%	1,291	29%	1,121	25%
	A band		4	2,381	520	22%	583	24%	596	25%	526	22%
	(cont.)	max	5	1,388	231	17%	267	19%	265	19%	208	15%
			6	676	2	0%	-	0%	-	0%	-	0%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	9,505	26%	10,716	29%	10,847	30%	9,887	27%
			1	18,148	8,248	45%	6,397	35%	6,494	36%	6,275	35%
			2	9,101	4,181	46%	3,142	35%	3,224	35%	3,031	33%
			3	4,521	2,064	46%	1,484	33%	1,530	34%	1,383	31%
Mid- century			4	2,381	1,042	44%	764	32%	818	34%	683	29%
(cont.)		min	5	1,388	636	46%	411	30%	441	32%	323	23%
			6	676	112	17%	74	11%	73	11%	19	3%
			7	505	-	0%	-	0%	-	0%	-	0%
	B band		Total	36,720	16,283	44%	12,272	33%	12,579	34%	11,715	32%
	D Dana		1	18,148	6,981	38%	7,352	41%	6,863	38%	6,683	37%
			2	9,101	3,361	37%	3,506	39%	3,307	36%	3,134	34%
			3	4,521	1,557	34%	1,628	36%	1,530	34%	1,420	31%
		med	4	2,381	839	35%	764	32%	736	31%	699	29%
		meu	5	1,388	473	34%	399	29%	387	28%	337	24%
			6	676	72	11%	48	7%	56	8%	6	1%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	13,283	36%	13,696	37%	12,880	35%	12,278	33%

			PS1		Length and	proportion	of REC2 segme	nts achieving	y visual clarity	attribute ban	ds and NBL for	each RC
Period	Attribute	Ctat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Perioa	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	5,809	32%	6,522	36%	6,558	36%	6,056	33%
			2	9,101	2,726	30%	3,055	34%	3,091	34%	2,783	31%
			3	4,521	1,203	27%	1,356	30%	1,401	31%	1,213	27%
	B band		4	2,381	575	24%	629	26%	638	27%	554	23%
	(cont.)	max	5	1,388	248	18%	291	21%	305	22%	228	16%
			6	676	16	2%	6	1%	6	1%	5	1%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	10,576	29%	11,859	32%	12,001	33%	10,838	30%
			1	18,148	8,911	49%	6,841	38%	6,910	38%	6,674	37%
			2	9,101	4,537	50%	3,376	37%	3,441	38%	3,243	36%
			3	4,521	2,320	51%	1,595	35%	1,673	37%	1,472	33%
Mid-		una!m	4	2,381	1,149	48%	818	34%	863	36%	711	30%
entury (cont.)		min	5	1,388	732	53%	434	31%	479	35%	350	25%
(,			6	676	174	26%	95	14%	92	14%	19	3%
			7	505	46	9%	-	0%	-	0%	-	0%
	NIDI		Total	36,720	17,869	49%	13,160	36%	13,459	37%	12,469	34%
	NBL		1	18,148	7,374	41%	7,722	43%	7,253	40%	7,008	39%
			2	9,101	3,528	39%	3,689	41%	3,488	38%	3,273	36%
			3	4,521	1,671	37%	1,720	38%	1,629	36%	1,496	33%
		a	4	2,381	877	37%	790	33%	772	32%	711	30%
		med	5	1,388	511	37%	434	31%	408	29%	352	25%
			6	676	94	14%	51	8%	63	9%	13	2%
			7	505	-	0%	-	0%	-	0%	10,838 6,674 3,243 1,472 711 350 19 - 12,469 7,008 3,273 1,496 711 352	0%
			Total	36,720	14,056	38%	14,405	39%	13,612	37%	12,853	35%

			PS1		Length and	proportion	of REC2 segme	nts achieving	y visual clarity	attribute ban	ds and NBL for	r each RCP
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Periou	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	6,067	33%	6,820	38%	6,898	38%	6,336	35%
			2	9,101	2,836	31%	3,162	35%	3,224	35%	2,887	32%
			3	4,521	1,259	28%	1,422	31%	1,479	33%	1,267	28%
Mid-	NBL		4	2,381	606	25%	645	27%	657	28%	571	24%
century (cont.)	(cont.)	max	5	1,388	264	19%	306	22%	322	23%	242	17%
, ,			6	676	18	3%	13	2%	13	2%	5	1%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	11,050	30%	12,369	34%	12,593	34%	11,307	31%

Table G2. Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) by late century under projected climate change for PS1, represented by minimum, median, and maximum results for each RCP

			PS1				of REC2 segme			attribute ban	ds and NBL for	each RCP
Dowland	Attribute	Ctat	Stroom order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	12,470	69%	11,881	65%	9,764	54%	8,267	46%
			2	9,101	6,248	69%	5,878	65%	4,783	53%	3,901	43%
			3	4,521	3,141	69%	2,874	64%	2,326	51%	1,797	40%
		min	4	2,381	1,760	74%	1,553	65%	1,286	54%	874	37%
		111111	5	1,388	1,009	73%	883	64%	717	52%	497	36%
			6	676	465	69%	265	39%	149	22%	71	11%
			7	505	164	32%	84	17%	-	0%	-	0%
			Total	36,720	25,255	69%	23,418	64%	19,024	52%	15,408	42%
			1	18,148	11,567	64%	9,926	55%	9,563	53%	8,191	45%
			2	9,101	5,673	62%	4,821	53%	4,500	49%	3,853	42%
			3	4,521	2,825	62%	2,301	51%	2,113	47%	1,785	39%
Late	A band	med	4	2,381	1,593	67%	1,273	53%	1,057	44%	780	33%
century	7	mea	5	1,388	912	66%	706	51%	551	40%	413	30%
			6	676	279	41%	155	23%	86	13%	48	7%
			7	505	109	22%	-	0%	-	0%	-	0%
	<u>.</u>		Total	36,720	22,958	63%	19,183	52%	17,870	49%	15,070	41%
			1	18,148	10,483	58%	9,763	54%	7,913	44%	7,971	44%
			2	9,101	5,043	55%	4,625	51%	3,635	40%	3,650	40%
			3	4,521	2,442	54%	2,185	48%	1,662	37%	1,666	37%
		max	4	2,381	1,373	58%	1,098	46%	787	33%	701	29%
		max	5	1,388	755	54%	620	45%	427	31%	388	28%
			6	676	192	28%	90	13%	58	9%	38	6%
			7	505	21	4%	-	0%	-	0%	-	0%
			Total	36,720	20,308	55%	18,381	50%	14,483	39%	14,416	39%

			PS1		Length and	proportion	of REC2 segme	nts achieving	g visual clarity	attribute ban	ds and NBL for	r each RC
Dania d	Attribute	Ctat	Cturana and an	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	13,880	76%	13,403	74%	11,154	61%	9,566	53%
			2	9,101	7,051	77%	6,721	74%	5,530	61%	4,561	50%
			3	4,521	3,560	79%	3,331	74%	2,729	60%	2,113	47%
			4	2,381	1,963	82%	1,851	78%	1,538	65%	1,038	44%
		min	5	1,388	1,114	80%	1,043	75%	853	61%	596	43%
			6	676	544	80%	518	77%	349	52%	110	16%
			7	505	214	42%	164	32%	118	23%	1	0%
			Total	36,720	28,325	77%	27,030	74%	22,270	61%	17,984	49%
			1	18,148	12,976	71%	11,204	62%	10,770	59%	9,388	52%
			2	9,101	6,480	71%	5,508	61%	5,083	56%	4,385	48%
			3	4,521	3,245	72%	2,701	60%	2,436	54%	2,035	45%
Late	Phand	mad	4	2,381	1,864	78%	1,515	64%	1,307	55%	879	37%
entury (cont.)	B band	med	5	1,388	1,088	78%	862	62%	727	52%	502	36%
			6	676	517	76%	346	51%	178	26%	57	8%
			7	505	179	35%	118	23%	21	4%	-	0%
			Total	36,720	26,348	72%	22,253	61%	20,522	56%	17,247	47%
			1	18,148	11,705	64%	11,109	61%	9,051	50%	8,907	49%
			2	9,101	5,724	63%	5,263	58%	4,170	46%	4,038	44%
			3	4,521	2,825	62%	2,543	56%	1,939	43%	1,841	41%
		m 21/	4	2,381	1,601	67%	1,378	58%	924	39%	789	33%
		max	5	1,388	923	66%	814	59%	476	34%	417	30%
			6	676	423	63%	201	30%	101	15%	49	7%
			7	505	138	27%	21	4%	-	0%	-	0%
			Total	36,720	23,338	64%	21,329	58%	16,662	45%	16,040	44%

			PS1		Length and	proportion	of REC2 segme	nts achieving	g visual clarity	attribute ban	ds and NBL for	each RCF
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	P6.0	RCP	8.5
Perioa	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	14,706	81%	14,163	78%	11,965	66%	10,446	58%
			2	9,101	7,509	83%	7,153	79%	6,036	66%	5,028	55%
			3	4,521	3,816	84%	3,635	80%	3,060	68%	2,380	53%
			4	2,381	2,098	88%	2,008	84%	1,705	72%	1,239	52%
		min	5	1,388	1,203	87%	1,144	82%	1,000	72%	688	50%
			6	676	605	90%	553	82%	523	77%	215	32%
			7	505	428	85%	223	44%	177	35%	72	14%
			Total	36,720	30,366	83%	28,880	79%	24,466	67%	20,067	55%
	•		1	18,148	13,785	76%	11,916	66%	11,535	64%	10,123	56%
			2	9,101	6,883	76%	5,941	65%	5,528	61%	4,722	52%
			3	4,521	3,470	77%	2,957	65%	2,724	60%	2,212	49%
Late	NBL	na a al	4	2,381	2,013	85%	1,673	70%	1,429	60%	973	41%
entury (cont.)	INBL	med	5	1,388	1,185	85%	994	72%	810	58%	567	41%
. ,			6	676	565	84%	519	77%	372	55%	127	19%
			7	505	343	68%	179	35%	144	29%	16	3%
			Total	36,720	28,244	77%	24,180	66%	22,543	61%	18,739	51%
			1	18,148	12,381	68%	11,792	65%	9,699	53%	9,524	52%
			2	9,101	6,107	67%	5,652	62%	4,490	49%	4,299	47%
			3	4,521	3,072	68%	2,799	62%	2,138	47%	1,961	43%
			4	2,381	1,753	74%	1,498	63%	1,115	47%	848	36%
		max	5	1,388	1,020	73%	918	66%	572	41%	450	32%
			6	676	526	78%	396	59%	179	26%	50	7%
			7	505	201	40%	145	29%	60	12%	-	0%
			Total	36,720	25,059	68%	23,200	63%	18,253	50%	17,133	47%

Table G3. Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) by mid-century under projected climate change for PS2, represented by minimum, median, and maximum results for each RCP

			PS2		Length and	proportion	of REC2 segme	nts achievin	y visual clarity	attribute bar	ds and NBL fo	r each RCF
Daniad	Attribute	Ct-t	C+	Total length	RCP	2.6	RCP	4.5	RCP	P6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	10,895	60%	9,100	50%	9,182	51%	8,095	45%
			2	9,101	5,412	59%	4,465	49%	4,503	49%	3,968	44%
			3	4,521	2,656	59%	2,128	47%	2,152	48%	1,893	42%
		•.	4	2,381	1,435	60%	1,176	49%	1,206	51%	984	41%
		min	5	1,388	796	57%	678	49%	666	48%	577	42%
			6	676	203	30%	128	19%	146	22%	79	12%
			7	505	7	1%	-	0%	-	0%	-	0%
			Total	36,720	21,404	58%	17,676	48%	17,855	49%	15,597	42%
			1	18,148	9,639	53%	9,282	51%	9,115	50%	8,183	45%
			2	9,101	4,642	51%	4,518	50%	4,441	49%	3,892	43%
			3	4,521	2,155	48%	2,159	48%	2,096	46%	1,868	41%
Mid-	A band		4	2,381	1,210	51%	1,125	47%	1,132	48%	968	41%
century	Aband	med	5	1,388	669	48%	608	44%	639	46%	529	38%
			6	676	154	23%	99	15%	109	16%	47	7%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	18,468	50%	17,792	48%	17,531	48%	15,486	42%
			1	18,148	8,242	45%	8,015	44%	7,833	43%	6,656	37%
			2	9,101	3,951	43%	3,858	42%	3,786	42%	3,181	35%
			3	4,521	1,827	40%	1,788	40%	1,798	40%	1,475	33%
		20.0 1/	4	2,381	973	41%	897	38%	900	38%	740	31%
		max	5	1,388	525	38%	504	36%	503	36%	446	32%
			6	676	74	11%	40	6%	51	8%	38	6%
			7	505	-	0%	-	0%	-	0%	-	0%
			Total	36,720	15,592	42%	15,102	41%	14,871	40%	12,535	34%

			PS2		Length and	proportion	of REC2 segme	nts achieving	y visual clarity a	attribute ban	ds and NBL for	r each RC
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
renou	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	12,883	71%	10,933	60%	11,100	61%	9,720	54%
			2	9,101	6,442	71%	5,382	59%	5,484	60%	4,744	52%
			3	4,521	3,209	71%	2,603	58%	2,674	59%	2,297	51%
			4	2,381	1,762	74%	1,523	64%	1,577	66%	1,223	51%
		min	5	1,388	1,004	72%	884	64%	870	63%	679	49%
			6	676	367	54%	266	39%	270	40%	163	24%
			7	505	147	29%	53	10%	66	13%	4	1%
			Total	36,720	25,814	70%	21,642	59%	22,041	60%	18,829	51%
			1	18,148	11,524	64%	11,114	61%	10,897	60%	9,694	53%
			2	9,101	5,573	61%	5,401	59%	5,310	58%	4,622	51%
			3	4,521	2,677	59%	2,636	58%	2,587	57%	2,218	49%
Mid-	Disease		4	2,381	1,556	65%	1,376	58%	1,394	59%	1,168	49%
entury (cont.)	B band	med	5	1,388	857	62%	757	55%	809	58%	646	47%
(,			6	676	254	38%	186	28%	205	30%	134	20%
			7	505	58	11%	21	4%	26	5%	-	0%
			Total	36,720	22,500	61%	21,491	59%	21,229	58%	18,482	50%
			1	18,148	9,869	54%	9,450	52%	9,217	51%	7,718	43%
			2	9,101	4,748	52%	4,542	50%	4,448	49%	3,675	40%
			3	4,521	2,265	50%	2,150	48%	2,125	47%	1,699	38%
			4	2,381	1,222	51%	1,090	46%	1,052	44%	853	36%
		max	5	1,388	660	48%	583	42%	585	42%	495	36%
			6	676	177	26%	137	20%	117	17%	70	10%
			7	505	12	2%	-	0%	-	0%	-	0%
			Total	36,720	18,953	52%	17,952	49%	17,543	48%	14,510	40%

			PS2		Length and	l proportion	of REC2 segme	nts achieving	y visual clarity	attribute ban	ds and NBL for	each RC
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	14,003	77%	12,172	67%	12,290	68%	10,850	60%
			2	9,101	7,073	78%	6,050	66%	6,126	67%	5,371	59%
			3	4,521	3,587	79%	2,963	66%	3,038	67%	2,628	58%
		ma i m	4	2,381	1,966	83%	1,728	73%	1,786	75%	1,459	61%
		min	5	1,388	1,111	80%	987	71%	979	71%	791	57%
			6	676	545	81%	466	69%	467	69%	310	46%
			7	505	202	40%	175	35%	175	35%	134	27%
			Total	36,720	28,486	78%	24,541	67%	24,862	68%	21,543	59%
			1	18,148	12,679	70%	12,230	67%	12,050	66%	10,666	59%
			2	9,101	6,173	68%	5,996	66%	5,919	65%	5,115	56%
			3	4,521	3,030	67%	2,965	66%	2,932	65%	2,522	56%
Mid- century	NBL	med	4	2,381	1,738	73%	1,601	67%	1,619	68%	1,345	57%
(cont.)	NDL	meu	5	1,388	970	70%	887	64%	929	67%	748	54%
,			6	676	447	66%	362	54%	395	58%	243	36%
			7	505	175	35%	143	28%	159	32%	65	13%
			Total	36,720	25,213	69%	24,185	66%	24,004	65%	20,705	56%
			1	18,148	10,911	60%	10,385	57%	10,123	56%	8,290	46%
			2	9,101	5,297	58%	4,974	55%	4,874	54%	3,909	43%
			3	4,521	2,579	57%	2,428	54%	2,411	53%	1,884	42%
		max	4	2,381	1,459	61%	1,246	52%	1,197	50%	923	39%
		IIIax	5	1,388	797	57%	682	49%	688	50%	519	37%
			6	676	341	50%	238	35%	204	30%	90	13%
			7	505	144	28%	67	13%	66	13%	-	0%
			Total	36,720	21,528	59%	20,020	55%	19,563	53%	15,614	43%

Table G4. Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) by late century under projected climate change for PS2, represented by minimum, median, and maximum results for each RCP

			PS2		Length and	proportion	of REC2 segme	nts achieving	visual clarity a	attribute ban	ds and NBL for	each RCP
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Period	Band	Slat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	13,500	74%	13,762	76%	12,377	68%	11,776	65%
			2	9,101	6,811	75%	6,943	76%	6,220	68%	5,891	65%
			3	4,521	3,491	77%	3,472	77%	3,114	69%	2,833	63%
		min	4	2,381	2,019	85%	2,004	84%	1,902	80%	1,654	69%
		111111	5	1,388	1,176	85%	1,118	81%	1,025	74%	939	68%
			6	676	629	93%	594	88%	538	80%	483	71%
			7	505	428	85%	428	85%	374	74%	154	30%
			Total	36,720	28,053	76%	28,321	77%	25,549	70%	23,729	65%
			1	18,148	13,189	73%	12,420	68%	12,724	70%	12,131	67%
			2	9,101	6,579	72%	6,220	68%	6,280	69%	5,979	66%
			3	4,521	3,340	74%	3,065	68%	3,070	68%	2,906	64%
Late	Band A	med	4	2,381	1,986	83%	1,869	79%	1,799	76%	1,606	67%
century	Dana A	meu	5	1,388	1,117	80%	1,013	73%	957	69%	846	61%
			6	676	616	91%	546	81%	492	73%	344	51%
			7	505	428	85%	400	79%	202	40%	102	20%
	<u>.</u>		Total	36,720	27,256	74%	25,532	70%	25,524	70%	23,914	65%
			1	18,148	12,659	70%	12,747	70%	11,436	63%	12,186	67%
			2	9,101	6,289	69%	6,296	69%	5,622	62%	5,882	65%
			3	4,521	3,140	69%	3,098	69%	2,690	60%	2,816	62%
	max	may	4	2,381	1,886	79%	1,795	75%	1,550	65%	1,515	64%
		max	5	1,388	1,033	74%	968	70%	871	63%	808	58%
			6	676	567	84%	475	70%	406	60%	263	39%
			7	505	428	85%	202	40%	128	25%	81	16%
			Total	36,720	26,001	71%	25,581	70%	22,703	62%	23,551	64%

			PS2		Length and	proportion	of REC2 segme	nts achieving	g visual clarity	attribute ban	ds and NBL for	each RCF
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCP	4.5	RCP	6.0	RCP	8.5
Perioa	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	14,360	79%	14,698	81%	13,244	73%	12,657	70%
			2	9,101	7,318	80%	7,409	81%	6,666	73%	6,327	70%
			3	4,521	3,693	82%	3,715	82%	3,343	74%	3,080	68%
			4	2,381	2,119	89%	2,089	88%	1,973	83%	1,829	77%
		min	5	1,388	1,223	88%	1,225	88%	1,116	80%	1,032	74%
			6	676	670	99%	660	98%	607	90%	531	79%
			7	505	428	85%	428	85%	428	85%	368	73%
			Total	36,720	29,812	81%	30,225	82%	27,375	75%	25,823	70%
			1	18,148	14,026	77%	13,158	73%	13,487	74%	13,027	72%
			2	9,101	7,035	77%	6,576	72%	6,619	73%	6,422	71%
			3	4,521	3,563	79%	3,263	72%	3,299	73%	3,155	70%
Late	District		4	2,381	2,067	87%	1,942	82%	1,897	80%	1,791	75%
entury (cont.)	B band	med	5	1,388	1,247	90%	1,123	81%	1,054	76%	1,001	72%
(,			6	676	653	97%	619	91%	571	84%	465	69%
			7	505	428	85%	428	85%	428	85%	201	40%
			Total	36,720	29,018	79%	27,110	74%	27,355	74%	26,060	71%
			1	18,148	13,349	74%	13,633	75%	12,113	67%	12,921	71%
			2	9,101	6,612	73%	6,678	73%	5,950	65%	6,278	69%
			3	4,521	3,310	73%	3,322	73%	2,888	64%	3,034	67%
			4	2,381	1,959	82%	1,871	79%	1,717	72%	1,696	71%
		max	5	1,388	1,161	84%	1,061	76%	959	69%	931	67%
			6	676	651	96%	570	84%	487	72%	451	67%
			7	505	428	85%	428	85%	310	61%	151	30%
			Total	36,720	27,469	75%	27,564	75%	24,424	67%	25,461	69%

			PS2		Length and	proportion	of REC2 segme	nts achieving	y visual clarity	attribute ban	ds and NBL for	each RCF
Period	Attribute	Stat	Stream order	Total length	RCP	2.6	RCF	4.5	RCP	6.0	RCP	8.5
Perioa	Band	Stat	Stream order	km	km	%	km	%	km	%	km	%
			1	18,148	14,855	82%	15,172	84%	13,748	76%	13,195	73%
			2	9,101	7,611	84%	7,679	84%	6,975	77%	6,630	73%
			3	4,521	3,865	85%	3,895	86%	3,521	78%	3,273	72%
		•.	4	2,381	2,191	92%	2,169	91%	2,048	86%	1,895	80%
		min	5	1,388	1,265	91%	1,259	91%	1,163	84%	1,103	79%
			6	676	676	100%	676	100%	670	99%	617	91%
			7	505	442	87%	428	85%	428	85%	428	85%
			Total	36,720	30,905	84%	31,277	85%	28,553	78%	27,140	74%
	•		1	18,148	14,488	80%	13,591	75%	13,955	77%	13,501	74%
			2	9,101	7,258	80%	6,817	75%	6,870	75%	6,655	73%
			3	4,521	3,682	81%	3,385	75%	3,424	76%	3,321	73%
Late entury	NBL	med	4	2,381	2,141	90%	2,007	84%	1,954	82%	1,854	78%
(cont.)	INDL	meu	5	1,388	1,269	91%	1,161	84%	1,152	83%	1,070	77%
(,			6	676	671	99%	668	99%	653	97%	549	81%
			7	505	428	85%	428	85%	428	85%	428	85%
			Total	36,720	29,937	82%	28,057	76%	28,436	77%	27,378	75%
			1	18,148	13,744	76%	14,019	77%	12,446	69%	13,344	74%
			2	9,101	6,813	75%	6,863	75%	6,102	67%	6,479	71%
			3	4,521	3,422	76%	3,420	76%	3,011	67%	3,167	70%
			4	2,381	2,026	85%	1,919	81%	1,761	74%	1,804	76%
		max	5	1,388	1,191	86%	1,151	83%	1,017	73%	1,028	74%
			6	676	670	99%	651	96%	587	87%	508	75%
			7	505	428	85%	428	85%	428	85%	424	84%
			Total	36,720	28,294	77%	28,451	77%	25,352	69%	26,754	73%

Appendix H – Length and proportion of River Environment Classification v2 (REC2) segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity), summarised by Freshwater Management Unit (FMU) at mid- and late century under projected climate change for each representative concentration pathway (RCP)

Table H1 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) summarised by FMU at mid-century under projected climate change for PS1, represented by minimum, median, and maximum results for each RCP

-		PS1			Length and	proportion o	f REC2 segme	nts achieving	visual clarity a	ttribute band	s and NBL for	each RCP
	Attribute		Total		RCP2	2.6	RCP4	4.5	RCP6	5.0	RCP8	3.5
Period	band	FMU	length (km)	stat	km	%	km	%	km	%	km	%
				min	280	50%	239	43%	247	44%	217	39%
		Kai Iwi	558	med	251	45%	227	41%	231	41%	219	39%
				max	220	39%	210	38%	208	37%	195	35%
				min	1,170	12%	708	7%	1,078	11%	844	8%
		Manawatū	9,941	med	1,093	11%	1,156	12%	1,002	10%	1,164	12%
				max	822	8%	949	10%	896	9%	828	8%
				min	441	24%	284	16%	309	17%	232	13%
Mid- century	A band	Puketoi ki Tai	1,825	med	352	19%	299	16%	306	17%	275	15%
century				max	303	17%	272	15%	268	15%	240	13%
				min	3,102	36%	2,418	28%	2,109	25%	2,432	28%
		Rangitīkei-Turakina	8,563	med	2,664	31%	2,801	33%	2,666	31%	2,614	31%
				max	1,906	22%	2,548	30%	2,660	31%	2,486	29%
				min	199	31%	157	24%	191	29%	133	21%
		Waiopehu	647	med	218	34%	273	42%	203	31%	248	38%
				max	138	21%	182	28%	168	26%	150	23%

		PS1			Length and	proportion o	f REC2 segme	nts achieving	visual clarity a	ttribute band	s and NBL for	each RCP
	Attribute		Total		RCP	2.6	RCP	4.5	RCP	5.0	RCP8	3.5
Period	band	FMU	length (km)	stat	km	%	km	%	km	%	km	%
				min	1,409	41%	843	24%	786	23%	773	22%
		Whangaehu	3,478	med	716	21%	851	24%	829	24%	643	18%
	A leaned			max	444	13%	680	20%	741	21%	587	17%
	A band (cont.)			min	7,303	62%	6,146	52%	6,263	53%	5,788	49%
	(COTTC.)	Whanganui	11,709	med	6,340	54%	6,414	55%	6,104	52%	5,751	49%
				max	5,673	48%	5,874	50%	5,906	50%	5,401	46%
				min	330	59%	271	49%	281	50%	229	41%
		Kai Iwi	558	med	282	51%	245	44%	261	47%	235	42%
				max	238	43%	222	40%	217	39%	212	38%
				min	1,759	18%	969	10%	1,630	16%	1,132	11%
Mid-		Manawatū	9,941	med	1,707	17%	1,813	18%	1,481	15%	1,746	18%
Century				max	1,100	11%	1,401	14%	1,279	13%	1,183	12%
(cont.)				min	639	35%	395	22%	434	24%	308	17%
		Puketoi ki Tai	1,825	med	472	26%	391	21%	404	22%	345	19%
	B band			max	396	22%	345	19%	328	18%	285	16%
				min	3,771	44%	2,962	35%	2,554	30%	2,881	34%
		Rangitīkei-Turakina	8,563	med	3,117	36%	3,209	37%	3,139	37%	2,967	35%
				max	2,268	26%	2,868	33%	3,030	35%	2,792	33%
				min	269	42%	217	33%	256	40%	182	28%
		Waiopehu	647	med	274	42%	363	56%	257	40%	337	52%
				max	194	30%	223	35%	216	33%	187	29%
				min	1,802	52%	1,071	31%	923	27%	1,027	30%
		Whangaehu	3,478	med	861	25%	1,055	30%	1,021	29%	763	22%
				max	533	15%	789	23%	865	25%	677	19%

		PS1			Length and	proportion o	f REC2 segmer	nts achieving	visual clarity a	ttribute band	s and NBL for	each RCP
	Attribute		Total		RCP	2.6	RCP4	4.5	RCP	5.0	RCP8	3.5
Period	band	FMU	length (km)	stat	km	%	km	%	km	%	km	%
	Disease			min	7,713	66%	6,388	55%	6,499	56%	5,956	51%
	B band (cont.)	Whanganui	11,709	med	6,569	56%	6,620	57%	6,316	54%	5,885	50%
	(COTIC.)			max	5,846	50%	6,011	51%	6,066	52%	5,502	47%
				min	358	64%	292	52%	303	54%	247	44%
		Kai Iwi	558	med	306	55%	268	48%	284	51%	245	44%
				max	260	47%	226	41%	225	40%	219	39%
				min	2,273	23%	1,304	13%	2,023	20%	1,458	15%
		Manawatū	9,941	med	2,020	20%	2,139	22%	1,787	18%	1,996	20%
				max	1,262	13%	1,629	16%	1,552	16%	1,384	14%
				min	878	48%	470	26%	521	29%	350	19%
Mid-		Puketoi ki Tai	1,825	med	568	31%	473	26%	488	27%	413	23%
Century				max	477	26%	411	23%	394	22%	335	18%
(cont.)				min	4,099	48%	3,123	36%	2,725	32%	3,024	35%
	NBL	Rangitīkei-Turakina	8,563	med	3,267	38%	3,338	39%	3,289	38%	3,087	36%
				max	2,361	28%	2,966	35%	3,143	37%	2,892	34%
				min	307	47%	252	39%	296	46%	220	34%
		Waiopehu	647	med	309	48%	397	61%	295	46%	372	58%
				max	220	34%	255	39%	251	39%	219	34%
				min	2,018	58%	1,210	35%	961	28%	1,163	33%
		Whangaehu	3,478	med	895	26%	1,098	32%	1,075	31%	793	23%
				max	547	16%	814	23%	903	26%	706	20%
				min	7,936	68%	6,508	56%	6,630	57%	6,008	51%
		Whanganui	11,709	med	6,691	57%	6,692	57%	6,394	55%	5,946	51%
				max	5,923	51%	6,067	52%	6,124	52%	5,553	47%

Table H2 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) summarised by FMU at late century under projected climate change for PS1, represented by minimum, median, and maximum results for each RCP

		PS1			Length and pro	portion of R	EC2 segments	achieving vis	ual clarity at	tribute band	ls and NBL fo	r each RCP
Period	Attribute	FMU	Total length	stat	RCP2	.6	RCP4	.5	RCP	6.0	RCP	3.5
Period	band	FIVIO	(km)	stat	km	%	km	%	km	%	km	%
				min	449	80%	369	66%	321	57%	270	48%
		Kai Iwi	558	med	372	67%	322	58%	292	52%	240	43%
				max	339	61%	295	53%	253	45%	226	41%
				min	4,544	46%	3,758	38%	2,790	28%	1,840	19%
		Manawatū	9,941	med	3,944	40%	2,904	29%	2,488	25%	1,732	17%
				max	3,109	31%	2,426	24%	1,626	16%	1,912	19%
				min	1,315	72%	1,150	63%	957	52%	753	41%
		Puketoi ki Tai	1,825	med	1,233	68%	1,003	55%	870	48%	658	36%
				max	1,060	58%	898	49%	772	42%	584	32%
Late				min	6,010	70%	5,616	66%	4,339	51%	3,800	44%
century	A band	Rangitīkei-Turakina	8,563	med	5,644	66%	4,537	53%	4,462	52%	3,823	45%
cerreary				max	5,030	59%	4,455	52%	3,459	40%	3,583	42%
				min	229	35%	228	35%	189	29%	138	21%
		Waiopehu	647	med	282	44%	185	29%	217	34%	196	30%
				max	178	28%	194	30%	111	17%	304	47%
				min	2,633	76%	2,635	76%	2,034	58%	1,461	42%
		Whangaehu	3,478	med	2,085	60%	1,926	55%	1,635	47%	1,500	43%
				max	1,904	55%	1,877	54%	1,310	38%	1,378	40%
				min	10,075	86%	9,661	83%	8,394	72%	7,147	61%
		Whanganui	11,709	med	9,397	80%	8,306	71%	7,906	68%	6,921	59%
				max	8,689	74%	8,236	70%	6,951	59%	6,430	55%

		PS1			Length and pro	portion of R	REC2 segments	achieving vis	sual clarity at	tribute band	ls and NBL fo	r each RCP
Period	Attribute	FMU	Total length	stat	RCP2	.6	RCP4	.5	RCP	6.0	RCP	8.5
Periou	band	FIVIO	(km)	Stat	km	%	km	%	km	%	km	%
				min	514	92%	450	81%	377	67%	302	54%
		Kai Iwi	558	med	457	82%	380	68%	337	60%	270	48%
				max	401	72%	335	60%	284	51%	240	43%
				min	5,639	57%	5,052	51%	3,962	40%	2,695	27%
		Manawatū	9,941	med	5,251	53%	4,036	41%	3,346	34%	2,537	26%
				max	4,221	42%	3,588	36%	2,295	23%	2,385	24%
				min	1,501	82%	1,443	79%	1,252	69%	972	53%
		Puketoi ki Tai	1,825	med	1,497	82%	1,305	72%	1,131	62%	861	47%
				max	1,366	75%	1,150	63%	995	55%	768	42%
Late				min	6,666	78%	6,370	74%	5,173	60%	4,485	52%
Century	B band	Rangitīkei-Turakina	8,563	med	6,331	74%	5,369	63%	5,134	60%	4,338	51%
(cont.)				max	5,820	68%	5,118	60%	4,142	48%	4,043	47%
				min	299	46%	300	46%	250	39%	191	30%
		Waiopehu	647	med	400	62%	250	39%	278	43%	253	39%
				max	218	34%	295	46%	169	26%	325	50%
				min	3,061	88%	3,141	90%	2,350	68%	1,854	53%
		Whangaehu	3,478	med	2,401	69%	2,100	60%	1,961	56%	1,799	52%
				max	2,121	61%	2,140	62%	1,499	43%	1,640	47%
				min	10,646	91%	10,274	88%	8,906	76%	7,486	64%
		Whanganui	11,709	med	10,011	86%	8,814	75%	8,334	71%	7,189	61%
				max	9,191	78%	8,702	74%	7,279	62%	6,640	57%
				min	529	95%	470	84%	398	71%	326	58%
	NBL	Kai Iwi	558	med	478	86%	402	72%	354	63%	288	52%
				max	430	77%	355	64%	302	54%	251	45%

		PS1			Length and pro	portion of R	EC2 segments	achieving vis	sual clarity at	tribute band	ls and NBL fo	r each RC
Daniad	Attribute	FMU	Total length	-4-4	RCP2	.6	RCP4	.5	RCP	6.0	RCP	8.5
Period	band	FIVIU	(km)	stat	km	%	km	%	km	%	km	%
				min	6,461	65%	5,842	59%	4,773	48%	3,469	35%
		Manawatū	9,941	med	6,035	61%	4,709	47%	4,132	42%	3,110	31%
				max	4,844	49%	4,289	43%	2,858	29%	2,784	28%
				min	1,635	90%	1,595	87%	1,449	79%	1,224	67%
		Puketoi ki Tai	1,825	med	1,646	90%	1,514	83%	1,361	75%	1,054	58%
				max	1,541	84%	1,398	77%	1,245	68%	905	50%
				min	7,086	83%	6,791	79%	5,636	66%	5,020	59%
Late	NBL	Rangitīkei-Turakina	8,563	med	6,711	78%	5,796	68%	5,644	66%	4,685	55%
Century	(cont.)			max	6,204	72%	5,579	65%	4,601	54%	4,296	50%
(cont.)				min	341	53%	345	53%	302	47%	226	35%
		Waiopehu	647	med	442	68%	293	45%	318	49%	279	43%
				max	261	40%	326	50%	186	29%	349	54%
				min	3,234	93%	3,227	93%	2,661	77%	2,103	60%
		Whangaehu	3,478	med	2,470	71%	2,314	67%	2,120	61%	1,965	56%
				max	2,263	65%	2,274	65%	1,579	45%	1,791	52%
				min	11,081	95%	10,610	91%	9,247	79%	7,700	66%
		Whanganui	11,709	med	10,461	89%	9,152	78%	8,613	74%	7,359	63%
				max	9,517	81%	8,978	77%	7,482	64%	6,757	58%

Table H3 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) summarised by FMU at mid-century under projected climate change for PS2, represented by minimum, median, and maximum results for each RCP

		PS2			Length and pro	portion of R	EC2 segments	achieving v	isual clarity a	ttribute ban	ds and NBL fo	or each RCP
Period	Attribute	FMU	Total length (km)	-4-4	RCP2	.6	RCP4	4.5	RCP	6.0	RCP	8.5
Period	band	FIVIO		Stat	km	%	km	%	km	%	km	%
				min	381	68%	330	59%	338	61%	292	52%
		Kai Iwi	558	med	340	61%	303	54%	313	56%	287	51%
				max	298	53%	266	48%	262	47%	245	44%
				min	2,921	29%	2,000	20%	2,386	24%	1,510	15%
		Manawatū	9,941	med	2,391	24%	2,042	21%	2,003	20%	1,744	18%
				max	1,680	17%	1,411	14%	1,279	13%	1,017	10%
		Puketoi ki Tai		min	932	51%	768	42%	803	44%	598	33%
			1,825	med	822	45%	689	38%	714	39%	583	32%
				max	705	39%	567	31%	540	30%	455	25%
				min	4,993	58%	4,093	48%	3,732	44%	3,630	42%
Mid- century	A band	Rangitīkei-Turakina	a 8,563	med	4,307	50%	4,114	48%	4,144	48%	3,591	42%
century				max	3,374	39%	3,549	41%	3,584	42%	3,051	36%
				min	215	33%	174	27%	208	32%	141	22%
		Waiopehu	647	med	235	36%	280	43%	211	33%	253	39%
				max	156	24%	184	28%	175	27%	155	24%
				min	2,397	69%	1,828	53%	1,785	51%	1,629	47%
		Whangaehu	3,478 m	med	1,717	49%	1,746	50%	1,743	50%	1,415	41%
				max	1,370	39%	1,451	42%	1,468	42%	1,041	30%
				min	9,565	82%	8,483	72%	8,603	73%	7,798	67%
		Whanganui	11,709	med	8,657	74%	8,618	74%	8,404	72%	7,612	65%
				max	8,009	68%	7,674	66%	7,564	65%	6,571	56%

		PS2			Length and pro	portion of R	EC2 segments	s achieving v	isual clarity a	ttribute ban	ds and NBL fo	or each RC
Period	Attribute	FMU	Total length (km)	stat	RCP2	.6	RCP4	4.5	RCP	6.0	RCP	8.5
Period	band	FIVIO		Stat	km	%	km	%	km	%	km	%
			558 m	min	471	84%	409	73%	419	75%	348	62%
		Kai Iwi		med	420	75%	361	65%	380	68%	344	62%
				max	354	63%	313	56%	301	54%	277	50%
				min	4,448	45%	3,202	32%	3,894	39%	2,246	23%
		Manawatū	9,941	med	3,864	39%	3,228	32%	3,148	32%	2,585	26%
				max	2,578	26%	2,162	22%	1,904	19%	1,508	15%
				min	1,322	72%	1,141	62%	1,168	64%	939	51%
		Puketoi ki Tai	1,825	med	1,200	66%	1,064	58%	1,098	60%	911	50%
	B band			max	1,081	59%	901	49%	853	47%	685	38%
Mid-		Rangitīkei-Turakina		min	6,040	71%	5,149	60%	4,828	56%	4,572	53%
century			8,563	med	5,268	62%	4,986	58%	5,098	60%	4,383	51%
(cont.)				max	4,377	51%	4,328	51%	4,355	51%	3,623	42%
		Waiopehu	647	min	289	45%	234	36%	279	43%	189	29%
				med	292	45%	373	58%	270	42%	345	53%
				max	214	33%	229	35%	220	34%	194	30%
				min	2,884	83%	2,276	65%	2,128	61%	2,117	61%
		Whangaehu	3,478	med	2,063	59%	2,192	63%	2,189	63%	1,773	51%
				max	1,693	49%	1,828	53%	1,863	54%	1,356	39%
				min	10,361	88%	9,231	79%	9,326	80%	8,418	72%
		Whanganui	11,709	med	9,393	80%	9,287	79%	9,046	77%	8,141	70%
				max	8,656	74%	8,191	70%	8,047	69%	6,868	59%
				min	485	87%	432	77%	438	78%	371	66%
	NBL	Kai Iwi	558	med	441	79%	387	69%	406	73%	371	66%
				max	379	68%	342	61%	334	60%	313	56%

		PS2			Length and pro	portion of R	EC2 segments	achieving v	isual clarity a	ttribute ban	ds and NBL fo	or each R
Period	Attribute	FMU	Total length (km)	stat	RCP2	.6	RCP4.5		RCP	6.0	RCP8.5	
Periou	band	FIVIO		Stat	km	%	km	%	km	%	km	%
			9,941	min	5,478	55%	4,210	42%	4,926	50%	3,141	32%
		Manawatū		med	4,839	49%	4,201	42%	4,160	42%	3,222	32%
				max	3,438	35%	2,678	27%	2,423	24%	1,809	18%
		Puketoi ki Tai		min	1,524	84%	1,417	78%	1,436	79%	1,268	69%
			1,825	med	1,497	82%	1,407	77%	1,436	79%	1,253	69%
	NBL (cont.)			max	1,422	78%	1,224	67%	1,153	63%	873	48%
Mid-		Rangitīkei-Turakina	a 8,563	min	6,633	77%	5,860	68%	5,553	65%	5,231	619
century				med	5,963	70%	5,610	66%	5,774	67%	4,943	58%
(cont.)	(COIIL.)			max	5,058	59%	4,893	57%	4,908	57%	3,872	45%
			647	min	327	51%	272	42%	317	49%	233	36%
		Waiopehu		med	327	51%	407	63%	301	47%	376	58%
				max	239	37%	260	40%	256	40%	229	35%
				min	3,213	92%	2,565	74%	2,312	66%	2,457	719
		Whangaehu	3,478	med	2,220	64%	2,402	69%	2,360	68%	2,020	589
				max	1,817	52%	2,078	60%	2,132	61%	1,511	439
				min	10,826	92%	9,785	84%	9,880	84%	8,843	769
		Whanganui	11,709	med	9,926	85%	9,771	83%	9,567	82%	8,520	739
				max	9,175	78%	8,547	73%	8,356	71%	7,006	60%

Table H4 Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL (or maintaining baseline visual clarity) summarised by FMU at late century under projected climate change for PS2, represented by minimum, median, and maximum results for each RCP

		PS2			Length and pro	Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL for each RCP									
Period	Attribute band	FMU	Total length (km)	stat	RCP2.	.6	RCP4	.5	RCP6	.0	RCP8	.5			
renou		FIVIO		stat	km	%	km	%	km	%	km	%			
			558	min	472	85%	454	81%	425	76%	381	68%			
		Kai Iwi		med	463	83%	424	76%	398	71%	352	63%			
				max	440	79%	396	71%	368	66%	330	59%			
				min	5,582	56%	5,470	55%	4,895	49%	4,260	43%			
		Manawatū	9,941	med	5,526	56%	4,973	50%	4,879	49%	4,096	41%			
				max	5,018	50%	4,688	47%	3,973	40%	4,232	43%			
		Puketoi ki Tai		min	1,557	85%	1,572	86%	1,503	82%	1,436	79%			
			1,825	med	1,591	87%	1,540	84%	1,501	82%	1,395	76%			
				max	1,546	85%	1,501	82%	1,442	79%	1,323	72%			
1.4.				min	6,627	77%	6,647	78%	5,882	69%	5,803	68%			
Late	A band	Rangitīkei-Turakina	a 8,563	med	6,537	76%	6,015	70%	6,292	73%	5,924	69%			
ceritary				max	6,277	73%	6,195	72%	5,461	64%	5,749	67%			
			647	min	233	36%	250	39%	213	33%	162	25%			
		Waiopehu		med	290	45%	212	33%	242	37%	209	32%			
				max	204	32%	223	34%	139	21%	314	48%			
				min	2,746	79%	2,942	85%	2,456	71%	2,213	64%			
		Whangaehu	3,478	med	2,379	68%	2,344	67%	2,265	65%	2,368	68%			
				max	2,294	66%	2,455	71%	2,037	59%	2,316	67%			
				min	10,834	93%	10,987	94%	10,176	87%	9,474	81%			
		Whanganui	11,709	med	10,469	89%	10,024	86%	9,947	85%	9,569	82%			
				max	10,223	87%	10,123	86%	9,284	79%	9,287	79%			

		PS2			Length and pr	oportion of	REC2 segment	ts achieving	visual clarity a	ttribute ban	ds and NBL fo	r each RCP
Period	Attribute	FMU	Total length (km)	stat	RCP2	.6	RCP4	.5	RCP6	.0	RCP8	3.5
Period	band	FIVIO		Stat	km	%	km	%	km	%	km	%
				min	503	90%	478	86%	453	81%	409	73%
		Kai Iwi	558	med	484	87%	456	82%	439	79%	382	68%
			1	max	460	83%	436	78%	392	70%	373	67%
				min	6,303	63%	6,323	64%	5,706	57%	5,050	51%
		Manawatū	9,941	med	6,434	65%	5,724	58%	5,534	56%	5,076	51%
				max	5,724	58%	5,602	56%	4,666	47%	4,996	50%
				min	1,653	91%	1,667	91%	1,560	85%	1,543	85%
		Puketoi ki Tai	1,825	med	1,693	93%	1,601	88%	1,597	88%	1,521	83%
				max	1,635	90%	1,587	87%	1,552	85%	1,493	82%
Late	B band			min	7,008	82%	7,032	82%	6,246	73%	6,241	73%
Century		Rangitīkei-Turakina	a 8,563	med	6,903	81%	6,391	75%	6,655	78%	6,347	74%
(cont.)				max	6,656	78%	6,477	76%	5,862	68%	6,131	72%
				min	301	46%	320	49%	278	43%	217	33%
		Waiopehu	647	med	401	62%	271	42%	306	47%	269	42%
				max	244	38%	320	49%	195	30%	341	53%
				min	3,044	88%	3,226	93%	2,672	77%	2,405	69%
		Whangaehu	3,478	med	2,457	71%	2,419	70%	2,425	70%	2,547	73%
				max	2,351	68%	2,570	74%	2,073	60%	2,510	72%
				min	11,000	94%	11,177	95%	10,460	89%	9,957	85%
		Whanganui	11,709	med	10,646	91%	10,248	88%	10,399	89%	9,920	85%
				max	10,399	89%	10,572	90%	9,685	83%	9,618	82%
				min	515	92%	483	86%	461	83%	416	74%
	NBL	Kai Iwi	558	med	492	88%	462	83%	441	79%	392	70%
				max	469	84%	441	79%	400	72%	380	68%

		PS2			Length and proportion of REC2 segments achieving visual clarity attribute bands and NBL for each RCP									
D. J. J	Attribute	F8411	Total length	-1-1	RCP2	.6	RCP4	.5	RCP6	.0	RCP8	1.5		
Period	band	FMU	(km)	stat	km	%	km	%	km	%	km	%		
				min	6,853	69%	6,916	70%	6,272	63%	5,670	57%		
		Manawatū	9,941	med	6,961	70%	6,199	62%	6,126	62%	5,627	57%		
				max	6,171	62%	6,064	61%	5,070	51%	5,475	55%		
				min	1,689	93%	1,734	95%	1,657	91%	1,641	90%		
		Puketoi ki Tai	1,825	med	1,751	96%	1,708	94%	1,696	93%	1,597	87%		
				max	1,703	93%	1,695	93%	1,654	91%	1,575	86%		
Late	NBL (sont)	Rangitīkei-Turakina		min	7,220	84%	7,265	85%	6,488	76%	6,434	75%		
Century			8,563	med	7,084	83%	6,594	77%	6,857	80%	6,581	77%		
(cont.)	(cont.)			max	6,835	80%	6,634	77%	6,010	70%	6,390	75%		
		Waiopehu	647	min	344	53%	362	56%	314	49%	255	39%		
				med	449	69%	309	48%	346	53%	300	46%		
				max	280	43%	345	53%	215	33%	370	57%		
				min	3,216	92%	3,274	94%	2,824	81%	2,580	74%		
		Whangaehu	3,478	med	2,490	72%	2,457	71%	2,471	71%	2,590	74%		
				max	2,365	68%	2,602	75%	2,085	60%	2,540	73%		
				min	11,068	95%	11,243	96%	10,537	90%	10,145	87%		
		Whanganui	11,709	med	10,710	91%	10,329	88%	10,498	90%	10,291	88%		
				max	10,471	89%	10,669	91%	9,919	85%	10,023	86%		

Appendix I – Summary comparing the ranges of River Environment Classification v2 (REC2) segments achieving A band, B band, and NBL with and without climate change impacts summarised by FMU for PS1 and PS2

Table I1 Summary comparing the ranges of REC2 segments achieving A band, B band, and NBL (or maintaining baseline visual clarity) across mid-(2040) and late (2090) century with and without climate change impacts summarised by FMU for PS1

	PS1		% of REC2 segments by leng	
Period	FMU	Attribute band	attribute ban Without climate change	ds and NBL: With climate change
Periou	FIVIO	A band	48%	35–50%
	Kai Iwi	B band	80%	38–59%
	Kai IWi	NBL	95%	39–64%
		A band	28%	7–12%
	Manawatū	B band	50%	10–18%
		NBL	68%	13–23%
		A band	31%	13–24%
	Puketoi ki Tai	B band	54%	16–35%
		NBL	78%	18–48%
Mid-	D '(=1'	A band	38%	22–36%
century	Rangitīkei-	B band	64%	26–44%
(2040)	Turakina	NBL	78%	28–48%
		A band	31%	21–42%
	Waiopehu	B band	55%	28–56%
		NBL	64%	34–61%
		A band	49%	13–41%
	Whangaehu	B band	76%	15–52%
		NBL	88%	16–58%
		A band	69%	46–62%
	Whanganui	B band	83%	47–66%
		NBL	93%	47–68%
		A band	73%	41–80%
	Kai Iwi	B band	90%	43–92%
		NBL	97%	45–95%
		A band	52%	16–46%
	Manawatū	B band	67%	23–57%
		NBL	78%	28–65%
		A band	73%	32–72%
	Puketoi ki Tai	B band	85%	42–82%
		NBL	94%	50–90%
Late	Rangitīkei-	A band	66%	40–70%
century	Turakina	B band	81%	47–78%
(2090)		NBL	87%	50–83%
		A band	32%	17–47%
	Waiopehu	B band	57%	26–62%
		NBL	65%	29–68%
	\//h a m == = = le :	A band	74%	38–76%
	Whangaehu	B band	90%	43–90%
		NBL A band	95%	45–93%
	Whan a anui	A band B band	83% 93%	55–86% 57–91%
	Whanganui			
		NBL	97%	58–95%

Note: The range of values for 'with climate change' includes the min, med, and max across all RCPs.

Table I2 Summary comparing the ranges of REC2 segments achieving A band, B band, and NBL (or maintaining baseline visual clarity) across mid-(2040) and late (2090) century with and without climate change impacts summarised by FMU for PS2

	PS2		% of REC2 segments by leng attribute ban	
Period	FMU	Attribute band	Without climate change	With climate change
		A band	67%	44–68%
	Kai Iwi	B band	88%	50–84%
		NBL	97%	56–87%
		A band	44%	10–29%
	Manawatū	B band	62%	15–45%
		NBL	74%	18–55%
		A band	59%	25–51%
	Puketoi ki Tai	B band	77%	38–72%
		NBL	88%	48–84%
Mid-	Rangitīkei-	A band	58%	36–58%
century	Turakina	B band	77%	42–71%
(2040)	Turakiria	NBL	85%	45–77%
		A band	31%	22–43%
	Waiopehu	B band	56%	29–58%
		NBL	64%	35–63%
		A band	68%	30–69%
	Whangaehu	B band	87%	39–83%
		NBL	94%	43–92%
		A band	79%	56–82%
	Whanganui	B band	91%	59–88%
		NBL	96%	60–92%
		A band	80%	59–85%
	Kai Iwi	B band	91%	67–90%
		NBL	97%	68–92%
		A band	60%	40–56%
	Manawatū	B band	73%	47–65%
		NBL	81%	51–70%
		A band	85%	72–87%
	Puketoi ki Tai	B band	91%	82–93%
		NBL	95%	86–96%
Late	Rangitīkei-	A band	72%	64–78%
century	Turakina	B band	84%	68–82%
(2090)		NBL	89%	70–85%
		A band	33%	21–48%
	Waiopehu	B band	58%	30–62%
		NBL	66%	33–69%
		A band	76%	59–85%
	Whangaehu	B band	90%	60–93%
		NBL	95%	60–94%
		A band	87%	79–94%
	Whanganui	B band	96%	82–95%
		NBL	98%	85–96%

Note: The range of values for 'with climate change' includes the min, med, and max across all RCPs.

horizons.govt.nz

24 hour freephone 0508 800 800 **fax** 06 952 2929 | **email** help@horizons.govt.nz Private Bag 11025, Manawatu Mail Centre, Palmerston North 4442